观察二次函数图象如何确定a,b.c的值?
4个回答
展开全部
1先看抛物线的开口,如果开口向上,则a>0,如果开口向下,则a<0.a=0时图像是一条直线。
2然后看抛物线与y轴的交点,如果交在y轴的上半轴,则c>0,如果交在下半轴,则c<0,如果交在原点,则c=0.
3由于抛物线的对称轴是x=-b/4a,所以如果对称轴在x轴正半轴,则-b/4a>0,再根据a值确定b值。相反,若对称轴在x轴负半轴,则-b/4a<0,若对称轴是y轴,则b=0.
2然后看抛物线与y轴的交点,如果交在y轴的上半轴,则c>0,如果交在下半轴,则c<0,如果交在原点,则c=0.
3由于抛物线的对称轴是x=-b/4a,所以如果对称轴在x轴正半轴,则-b/4a>0,再根据a值确定b值。相反,若对称轴在x轴负半轴,则-b/4a<0,若对称轴是y轴,则b=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
二次函数:y=ax^2+bx+c
(a,b,c是常数,且a不等于0)
a>0开口向上
a<0开口向下
a,b同号,对称轴在y轴左侧,反之,再y轴右侧
|x1-x2|=根号下b^2-4ac除以|a|
与y轴交点为(0,c)
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根
b^2-4ac<0,ax^2+bx+c=0无实根
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根
对称轴x=-b/2a
顶点(-b/2a,(4ac-b^2)/4a)
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减
(a,b,c是常数,且a不等于0)
a>0开口向上
a<0开口向下
a,b同号,对称轴在y轴左侧,反之,再y轴右侧
|x1-x2|=根号下b^2-4ac除以|a|
与y轴交点为(0,c)
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根
b^2-4ac<0,ax^2+bx+c=0无实根
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根
对称轴x=-b/2a
顶点(-b/2a,(4ac-b^2)/4a)
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
二次函数:y=ax^2+bx+c
(a,b,c是常数,且a不等于0)
a>0开口向上
a<0开口向下
a,b同号,对称轴在y轴左侧,反之,再y轴右侧
|x1-x2|=根号下b^2-4ac除以|a|
与y轴交点为(0,c)
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根
b^2-4ac<0,ax^2+bx+c=0无实根
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根
对称轴x=-b/2a
顶点(-b/2a,(4ac-b^2)/4a)
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减
(a,b,c是常数,且a不等于0)
a>0开口向上
a<0开口向下
a,b同号,对称轴在y轴左侧,反之,再y轴右侧
|x1-x2|=根号下b^2-4ac除以|a|
与y轴交点为(0,c)
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根
b^2-4ac<0,ax^2+bx+c=0无实根
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根
对称轴x=-b/2a
顶点(-b/2a,(4ac-b^2)/4a)
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询