1个回答
展开全部
证明,
因为BD垂直AC,所以三角形BCD是直角三角形。又E是BC中点,所以DE是斜边BC上的中线。因此BE=DE=CE,且角DCE=角CDE。
因为角FDA和角CDE是对顶角,所以角FDA=角CDE=角DCE
又角FBD=90-角DBC=角DCB,所以角FBD=角FDA
因此在三角形FDA和FBD中,角F是公用角,角FBD=角FDA,所以两个三角形相似。
因此DF:BF=AD:BD
在直角三角形ADB和直角三角形ABC中,角ABD=角ACB已经得证,所以两个三角形相似,
因此AD:DB=AB:BC
所以AB:BC=AD:DB=DF:BF
因为BD垂直AC,所以三角形BCD是直角三角形。又E是BC中点,所以DE是斜边BC上的中线。因此BE=DE=CE,且角DCE=角CDE。
因为角FDA和角CDE是对顶角,所以角FDA=角CDE=角DCE
又角FBD=90-角DBC=角DCB,所以角FBD=角FDA
因此在三角形FDA和FBD中,角F是公用角,角FBD=角FDA,所以两个三角形相似。
因此DF:BF=AD:BD
在直角三角形ADB和直角三角形ABC中,角ABD=角ACB已经得证,所以两个三角形相似,
因此AD:DB=AB:BC
所以AB:BC=AD:DB=DF:BF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询