为什么y=x绝对值时x=0不可导?

 我来答
杨老师秒懂课堂
高能答主

2021-11-12 · 分享生活酸甜苦辣咸,喜怒哀乐。
杨老师秒懂课堂
采纳数:876 获赞数:110699

向TA提问 私信TA
展开全部

因右导数是1,左导数是一1。所以丨x丨在x=0处不可导。

在(0,0)点的时候是尖点,所以不存在唯一切线,所以在这点是不可导的。

从曲线形状判断是否可导,就是看曲线是否光滑,如果出现折线尖角的情况,这个点就不可导。

左极限不等于右极限,因此不可导,这个函数经常用来说明连续不可导。

绝对值函数

绝对值函数,在0点左右,会发生图像上下反折,产生尖角,此处左右导数不相等,因此不可导。分母为0点,开平方内0点,是定义域的边界,可能不可导。

函数值趋于无穷大的点,有可能不可导。函数只在定义域内有意义,导数固然也只在定义域内有意义,这是基本依据。定义域的断点,端点,常常是导数不存在的点,需要甄别。

简单地说,初等函数在其定义域内均可导,一般可根据导数定义去判断,即在某点处左导数等于右导数。

教育博文老师
2023-07-14
知道答主
回答量:22
采纳率:0%
帮助的人:5873
展开全部
你好呀!当我们考虑函数y=|x|时,我们可以看到在x=0处,函数的图像出现了一个"拐点"。这是因为在x=0附近,函数的斜率突然从负数变成了正数,没有一个明确的斜率值。也就是说,在x=0处,数的斜率没有定义,因此不可导这种情况发生的原因是绝对值函数在x=0处不是光滑的,没有一个明确的斜率。当我们求导数时,我们需要考虑函数的光滑性,即函数的图像没有突变或拐点。但是在绝对值函数中,当x=0时,函数的图像确实出现了突变,导致不可导。所以,对于函数y=|x|来说,x=0处不可导。【扩展补充】
绝对值函数的图像是一条V形的直线,具有对称性。在x=0处,左右两边的斜率分别为-1和1,但它们没有一个明确的斜率值。这是因为在x=0附近,函数的变化速率非常快,从负无穷大一直变化到正无穷大,没有一个确定的斜率。在导数的定义中,导数表示函数在某一点的变化速率。如果函数在某一点不光滑,即存在突变或拐点,那么导数就没有定义。这就是为什么绝对值函数在x=0处不可导的原因。虽然绝对值函数在x=0处不可导,但它在其他的点都是可导的。在x≠0的区间内,函数的导数为-1或1,即函数的斜率为-1或1。只有在x=0处,导数没有定义。所以,绝对值函数在x=0处不可导,但在其他点都是可导的。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
陈fai老斯
2023-07-20 · 超过42用户采纳过TA的回答
知道小有建树答主
回答量:421
采纳率:100%
帮助的人:12.7万
展开全部
当函数的绝对值含有分段定义时,我们需要分别讨论各个分段的可导性。对于函数 y = |x|,在 x = 0 处不可导的原因是函数在该点的左导数和右导数不相等。
在 x > 0 的区间内,函数 y = |x| 实际上是 y = x 的图像,因为在这个范围内,|x| 和 x 的值是相等的。对于 x > 0,y = |x| 的导数等于 1,因为 x 的导数是 1。
在 x < 0 的区间内,函数 y = |x| 实际上是 y = -x 的图像,因为在这个范围内,|x| 和 -x 的值是相等的。对于 x < 0,y = |x| 的导数等于 -1,因为 -x 的导数是 -1。
然而,在 x = 0 的点,我们无法找到一个唯一的切线来定义函数的导数。在 x = 0 时,函数 y = |x| 的图像在原点处形成一个尖点,没有唯一的切线。左侧的导数为 -1,右侧的导数为 1,因此左导数和右导数不相等,导致在 x = 0 处不可导。
在不可导的点,函数的导数不存在或不唯一。这意味着在 x = 0 处,y = |x| 的导数不存在,所以在该点不可导。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
生活达人唐鲜生
2023-07-15 · TA获得超过123个赞
知道小有建树答主
回答量:1789
采纳率:93%
帮助的人:77.7万
展开全部
当y = |x|时,x = 0时的导数不存在,即不可导。这可以通过导数的定义来进行解释。

在x = 0处,我们可以使用导数的定义来计算导数。导数定义为:
f'(x) = lim(h->0) [f(x+h) - f(x)] / h

我们希望计算在x = 0时的导数,即 f'(0)。代入f(x) = |x|,我们得到:
f'(0) = lim(h->0) [|h| - 0] / h

当h趋近于0时,我们可以分别考虑h > 0和h < 0的情况。
当h > 0时,我们有:
f'(0) = lim(h->0+) [h] / h = 1

当h < 0时,我们有:
f'(0) = lim(h->0-) [-h] / h = -1

因此,当考虑左右极限时,导数的值不一致,即不存在唯一的导数值。因此,在x = 0处,y = |x|的导数不存在,即不可导。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式