sinx的泰勒公式怎么推导的?

 我来答
百度网友9fd5cf7
高粉答主

2023-01-02 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:286
采纳率:0%
帮助的人:10.5万
展开全部

是tanx = x+ (1/3)x^3 +....
不同,sinx是:sinx = x-(1/6)x^3+.....

常用泰勒展开式
e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……

ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k + ……(|x|<1)

sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞
cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞

arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)

arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)

arctan x = x - x^3/3 + x^5/5 -……(x≤1)

独缺tanx 泰勒展开式。有好事者用sinx/cosx算出 tanx 泰勒展开式的前五项。

tanx=x+x^3/3+(2 x^5)/15+(17 x^7)/315+(62 x^9)/2835+O[x]^11
最后一项是余项,(|x|<π/2).

方法就是多项式的 竖式除法 ,只不过是把低次幂排在前面。
由于这个多项式的竖式除法很繁琐,我只弄了四项,足可帮助理解。




当|x|<π/4时,舍弃余项,误差较小。

当x=π/4时, tanx=1,无须tanx 泰勒展开式。           

当π/41,误差很大。

这种情况要转换思路,令y=π/2-x,用10阶泰勒展开式算出tany,然后  tanx=1/tany

同理,当-π/2,然后  tanx=1/tany

所以, 当x=π/4时, tanx泰勒展开式误差最大。

10阶五项 tan(π/4)=0.99917,误差8.3/10000

6阶三项 tan(π/4)=0.9867,误差 >1%

直接用sinx,cosx的泰勒展开式相除,分别取前三项

sin(π/4)=0.707143,     cos(π/4)=0.707429, sin(π/4)/ cos(π/4)=0.999595,  误差约4/10000 

对比可知,五项tanx的泰勒展开式比三项sinx/cosx的泰勒展开式误差还大,

并且π/4

所以 tanx泰勒展开式不常用。

不过,当 |x|<π/6时,tanx的泰勒展开式的误差还算小 ,可用。                           

扩展资料

1、展开三角函数y=sinx和y=cosx。

解:根据导数表得:f(x)=sinx,f'(x)=cosx,f''(x)=-sinx,f'''(x)=-cosx,f⑷(x)=sinx……

于是得出了周期规律。分别算出f(0)=0,f'(0)=1,f''(x)=0,f'''(0)=-1,f⑷=0……

最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。)

类似地,可以展开y=cosx。

2、计算近似值e=lim x→∞ (1+1/x)^x。

解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:

e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n!

当x=1时,e≈1+1+1/2!+1/3!+……+1/n!

取n=10,即可算出近似值e≈2.7182818。

3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位)

证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。

由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。

参考资料:泰勒公式的百度百科

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
东莞大凡
2024-08-07 广告
作为东莞市大凡光学科技有限公司的一员,我们深知Matlab圆点标定板在相机标定中的重要性。该标定板通过均匀分布的圆点,帮助精确计算相机参数,优化成像效果。Matlab强大的编程功能,使得我们能够灵活设计标定板,调整圆点大小、数量和分布,以满... 点击进入详情页
本回答由东莞大凡提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式