解方程z^4-i-1=0
1个回答
关注
展开全部
令z = x + yi,代入原方程中得到:(x+yi)^4 - i - 1 = 0展开并整理,得到:x^4 + 6x^2y^2 + y^4 - 1 + 4ix^3y - 4ixy^3 = 0 + 0i令实部和虚部分别相等,得到:x^4 + 6x^2y^2 + y^4 - 1 = 04x^3y - 4xy^3 = 0化简第二个方程,得到:xy(x^2 - y^2) = 0因为xy不为零,所以有x^2 - y^2 = 0,即x = ±y。将x = ±y代入第一个方程,得到:2x^4 - 1 = 0解得x = ±(1/√2),y = ±(1/√2)。因此,方程的四个解为:z1 = (1/√2) + (1/√2)iz2 = -(1/√2) - (1/√2)iz3 = (1/√2) - (1/√2)iz4 = -(1/√2) + (1/√2)i
咨询记录 · 回答于2023-04-17
解方程z^4-i-1=0
您好,很高兴为您解答:解方程z^4-i-1=0z^4-i-1=0z^4=i+1z^4=(1+i)(1-i)z^4=(1+i)(1+i^2)z^4=(1+i)(1+(-1))z^4=(1+i)2z=±√(1+i)2z=±√2(1+i)
令z = x + yi,代入原方程中得到:(x+yi)^4 - i - 1 = 0展开并整理,得到:x^4 + 6x^2y^2 + y^4 - 1 + 4ix^3y - 4ixy^3 = 0 + 0i令实部和虚部分别相等,得到:x^4 + 6x^2y^2 + y^4 - 1 = 04x^3y - 4xy^3 = 0化简第二个方程,得到:xy(x^2 - y^2) = 0因为xy不为零,所以有x^2 - y^2 = 0,即x = ±y。将x = ±y代入第一个方程,得到:2x^4 - 1 = 0解得x = ±(1/√2),y = ±(1/√2)。因此,方程的四个解为:z1 = (1/√2) + (1/√2)iz2 = -(1/√2) - (1/√2)iz3 = (1/√2) - (1/√2)iz4 = -(1/√2) + (1/√2)i
我看不懂
麻烦给我解题步骤
亲,第二个这就是解题步骤。您直接抄上去就好了
哦哦哦
请问一下xy 的答案是正负二分之根号二吧?
那个答案是正负根号二分之一吗?我换成正负二分之根号二可以吧?
可以的哦亲