设函数f(x)=√3cos2ωx+sinωxcosωx+a(其中ω>0,a∈R),且f(x)的图像在y轴右侧的第一个高点的横坐标为π/
(1)求f(x)的周期、值域、单调增区间;(2)如果f(x)在区间[-π/3,5π/6]上的最小值为√3,求a的值....
(1)求f(x)的周期、值域、单调增区间;
(2)如果f(x)在区间[-π/3,5π/6]上的最小值为√3,求a的值. 展开
(2)如果f(x)在区间[-π/3,5π/6]上的最小值为√3,求a的值. 展开
展开全部
f(x)=√3cosωx+sinωxcosωx+a
=√3/2×(2cosωx-1)+√3/2+1/2×2sinωxcosωx+a
=√3/2cos2ωx+1/2sin2ωx+a+√3/2
=sin(π/3)cos2ωx+cos(π/3)sin2ωx+a+√3/2
=sin(2wx+π/3)+a+√3/2
既然在π/6处取得第一个最高点,那么有2w×π/6+π/3=π/2。w=1/2
2:f(x)=sin(x+π/3)+a+√3/2。f(x)在区间[-π/3,5π/6]上的最小值为√3
当x在区间[-π/3,5π/6]上时,x+π/3在区间[0,π/2]里,在这个区间内,当x+π/3=0时,取得最小值。即此时f(x)的最小值为a+√3/2,依题意有a+√3/2=√3。故有a=√3/2
=√3/2×(2cosωx-1)+√3/2+1/2×2sinωxcosωx+a
=√3/2cos2ωx+1/2sin2ωx+a+√3/2
=sin(π/3)cos2ωx+cos(π/3)sin2ωx+a+√3/2
=sin(2wx+π/3)+a+√3/2
既然在π/6处取得第一个最高点,那么有2w×π/6+π/3=π/2。w=1/2
2:f(x)=sin(x+π/3)+a+√3/2。f(x)在区间[-π/3,5π/6]上的最小值为√3
当x在区间[-π/3,5π/6]上时,x+π/3在区间[0,π/2]里,在这个区间内,当x+π/3=0时,取得最小值。即此时f(x)的最小值为a+√3/2,依题意有a+√3/2=√3。故有a=√3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询