设三角形ABC的内角A,B,C的对边分别为a,b,c,且A=60度,c=3b,求:a/c的值; 1/tanB+1/tanC的值.
1个回答
展开全部
cotB+cotC=cosB/sinB+cosC/厅明sinC=(cosBsinC+sinBcosC)/(sinBsinC)=sin(B+C)/(sinBsinC)
=sin(180°-A)/(sinBsinC)=sinA/(sinBsinC)
又由正弦定理,a/sinA=b/sinB=c/sinC=2R,所以,
cotB+cotC=[a^2/扮梁告(bc)]/渣弯sinA=[a^2/(3b^2)]/sin60°=[(2√3)/9]*a^2/b^2
再由余弦定理,a^2=b^2+c^2-2bccosA=b^2+9b^2-2b*3b*(1/2)=7b^2知a^2/b^2=7
所以,cotB+cotC=(14√3)/9.
=sin(180°-A)/(sinBsinC)=sinA/(sinBsinC)
又由正弦定理,a/sinA=b/sinB=c/sinC=2R,所以,
cotB+cotC=[a^2/扮梁告(bc)]/渣弯sinA=[a^2/(3b^2)]/sin60°=[(2√3)/9]*a^2/b^2
再由余弦定理,a^2=b^2+c^2-2bccosA=b^2+9b^2-2b*3b*(1/2)=7b^2知a^2/b^2=7
所以,cotB+cotC=(14√3)/9.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询