已知sin(a+3π/4)=5/13,cos(π/4-b)=4/5,且-π/4<a<π/4,π/4<b<3π/4求cos(a-b)的值
1个回答
展开全部
由-π/4<a<π/4, π/4<b<3π/4,得:
π/2<a+3π/4<π, -π/2<π/4-b<0,
由sin(a+3π/4)=5/13, cos(π/4-b)=4/5,得:
cos(a+3π/4)=-12/13, sin(π/4-b)=-3/5,
所以
cos(a-b)=cos[π+(a-b)]=cos[(a+3π/4)+(π/4-b)]
=cos(a+3π/4)*cos(π/4-b)-sin(a+3π/4)*sin(π/4-b)
=-12/13*4/5+5/13*3/5=-33/65。
π/2<a+3π/4<π, -π/2<π/4-b<0,
由sin(a+3π/4)=5/13, cos(π/4-b)=4/5,得:
cos(a+3π/4)=-12/13, sin(π/4-b)=-3/5,
所以
cos(a-b)=cos[π+(a-b)]=cos[(a+3π/4)+(π/4-b)]
=cos(a+3π/4)*cos(π/4-b)-sin(a+3π/4)*sin(π/4-b)
=-12/13*4/5+5/13*3/5=-33/65。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询