在三角形ABC中,a,b,c分别为内角A,B,C所对的边,且满足(2b-c)cosA=acosC 1.求A的大小: 2.现给出三个条 10
1个回答
展开全部
(2b-c)cosA-acosC=0
由正弦定理b/sinB=a/sinA=c/sinC=2R
b=2RsinB
a=2RsinA
c=2RsinC
(2b-c)cosA-acosC=0
2R(2sinB-sinC)cosA-2RsinAcosC=0
(2sinB-sinC)cosA-sinAcosC=0
2sinBcosA-sinCcosA-sinAcosC=0
2sinBcosA-(sinCcosA+sinAcosC)=0
2sinBcosA-sin(A+C)=0,
2sinBcosA-sin(180-B)=0,
所以:2sinBcosA-sinB=0,
因为:A、B∈(0,π),sinB≠0
所以:cosA=1/2,
所以:A=60度
由正弦定理b/sinB=a/sinA=c/sinC=2R
b=2RsinB
a=2RsinA
c=2RsinC
(2b-c)cosA-acosC=0
2R(2sinB-sinC)cosA-2RsinAcosC=0
(2sinB-sinC)cosA-sinAcosC=0
2sinBcosA-sinCcosA-sinAcosC=0
2sinBcosA-(sinCcosA+sinAcosC)=0
2sinBcosA-sin(A+C)=0,
2sinBcosA-sin(180-B)=0,
所以:2sinBcosA-sinB=0,
因为:A、B∈(0,π),sinB≠0
所以:cosA=1/2,
所以:A=60度
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询