初二数学问题,见下图
1个回答
展开全部
1/1*3+1/3*5+1/5*7+......+1/(2n-1)*(2n+1)
=1/2[1/1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=n/(2n+1)
1/x(x+3)+1/(x+3)(x+6)+1/(x+6)(x+9)+1/(x+9)(x+12)
=1/3[1/x-1/(x+3)+1/(x+3)-1/(x+6)+1/(x+6)-1/(x+9)+1/(x+9)-1/(x+12)]
=1/3[1/x-1/(x+12)]
=4/(x*x+2x)
* 表示乘 / 表示除
=1/2[1/1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=n/(2n+1)
1/x(x+3)+1/(x+3)(x+6)+1/(x+6)(x+9)+1/(x+9)(x+12)
=1/3[1/x-1/(x+3)+1/(x+3)-1/(x+6)+1/(x+6)-1/(x+9)+1/(x+9)-1/(x+12)]
=1/3[1/x-1/(x+12)]
=4/(x*x+2x)
* 表示乘 / 表示除
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询