等差等比数列问题……麻烦大家帮忙
设{an}为等差数列,{bn}为各项均为正数的等差数列,a1=b1=1,a2+a4=b3,b2b4=a3(1)求{an}的通项公式(2)求{bn}的前10项的和T10要详...
设{an}为等差数列,{bn}为各项均为正数的等差数列
,a1=b1=1,a2+a4=b3,b2b4=a3
(1)求{an}的通项公式
(2)求{bn}的前10项的和T10
要详细过程谢谢了 展开
,a1=b1=1,a2+a4=b3,b2b4=a3
(1)求{an}的通项公式
(2)求{bn}的前10项的和T10
要详细过程谢谢了 展开
2个回答
展开全部
题干有错误,{bn}应该等比数列,否则不符合题意。证伪如下:
由a2+a4=b3 知b3=2a3
由b2b4=a3 知(b3-d)(b3+d)=a3
所以2(b3^2-d^2)=b3
又b3=b1+2d即b3=b1+2d
整理求得d为负数,所以不和题意,所以{bn}为等比数列
则求解如下:
由a2+a4=b3 知b3=2a3
由b2b4=a3 知b3^2=a3
易知a3=1/4 b3=1/2(另一组不符合题意舍去)
剩下的就非常简单了
(1)an=-3n/8+11/8
(2)bn=(√2/2)^n-1
T10=2+√2-(5+√2)/2^5
由a2+a4=b3 知b3=2a3
由b2b4=a3 知(b3-d)(b3+d)=a3
所以2(b3^2-d^2)=b3
又b3=b1+2d即b3=b1+2d
整理求得d为负数,所以不和题意,所以{bn}为等比数列
则求解如下:
由a2+a4=b3 知b3=2a3
由b2b4=a3 知b3^2=a3
易知a3=1/4 b3=1/2(另一组不符合题意舍去)
剩下的就非常简单了
(1)an=-3n/8+11/8
(2)bn=(√2/2)^n-1
T10=2+√2-(5+√2)/2^5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询