在四边形ABCD中,AB=AD=6,∠A=60°,∠ADC=150°,已知四边形的周长为30,求BC的长 10
展开全部
AB=AD=6,∠A=60°,得BD=6,∠ADB=60°,有∠ADC=150°,得∠BDC=90°
BC+CD=30-AB-AD=30-12=18
设BC=X,则由直角三角形BDC得,BC²=BD²+CD²
X²=6²+(18-X)²
X=10
BC+CD=30-AB-AD=30-12=18
设BC=X,则由直角三角形BDC得,BC²=BD²+CD²
X²=6²+(18-X)²
X=10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:连接BD
∵AB=AD,∠A=60度
∴△ABD是等边三角形
∴∠ADB=60°
∵∠ADC=150°
∴∠CDB=90°
∵等边三角形ABD的边长为6
易得△ABD的面积=9√3
∵ABCD周长=30
∴BC+CD=18
设CD=x。则BC=18-x
根据勾股定理
x^2+6^2=(18-x)^2
解得x=8
∴CD =8
∴△BCD 的面积=1/2*6*8=24
∴S ABCD 的面积=24+9√3
∵AB=AD,∠A=60度
∴△ABD是等边三角形
∴∠ADB=60°
∵∠ADC=150°
∴∠CDB=90°
∵等边三角形ABD的边长为6
易得△ABD的面积=9√3
∵ABCD周长=30
∴BC+CD=18
设CD=x。则BC=18-x
根据勾股定理
x^2+6^2=(18-x)^2
解得x=8
∴CD =8
∴△BCD 的面积=1/2*6*8=24
∴S ABCD 的面积=24+9√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
联接BD,则角BDC为90度,设DC为k,则BC为根号下K平方+36,然后K+根号下K平方+36=18,K=8,bc=10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询