如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O
如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证...
如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC于H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.
展开
展开全部
(1)证明:连接OE
FE、FA是⊙O的两条切线
∴∠FAO=∠FEO=90°
在Rt△OAF和Rt△OEF中,
∴Rt△FAO≌Rt△FEO(HL),
∴∠AOF=∠EOF=
∠AOE,
∴∠AOF=∠ABE,
∴OF∥BE,
(2)解:过F作FQ⊥BC于Q
∴PQ=BP-BQ=x-y
PF=EF+EP=FA+BP=x+y
∵在Rt△PFQ中
∴FQ2+QP2=PF2
∴22+(x-y)2=(x+y)2
化简得:y=
,(1<x<2);
(3)存在这样的P点,
理由:∵∠EOF=∠AOF,
∴∠EHG=∠EOA=2∠EOF,
当∠EFO=∠EHG=2∠EOF时,
即∠EOF=30°时,Rt△EFO∽Rt△EHG,
此时Rt△AFO中,
y=AF=OA?tan30°=
,
∴x=
=
∴当x=
,y=
时,△EFO∽△EHG.
FE、FA是⊙O的两条切线
∴∠FAO=∠FEO=90°
在Rt△OAF和Rt△OEF中,
|
∴Rt△FAO≌Rt△FEO(HL),
∴∠AOF=∠EOF=
1 |
2 |
∴∠AOF=∠ABE,
∴OF∥BE,
(2)解:过F作FQ⊥BC于Q
∴PQ=BP-BQ=x-y
PF=EF+EP=FA+BP=x+y
∵在Rt△PFQ中
∴FQ2+QP2=PF2
∴22+(x-y)2=(x+y)2
化简得:y=
1 |
x |
(3)存在这样的P点,
理由:∵∠EOF=∠AOF,
∴∠EHG=∠EOA=2∠EOF,
当∠EFO=∠EHG=2∠EOF时,
即∠EOF=30°时,Rt△EFO∽Rt△EHG,
此时Rt△AFO中,
y=AF=OA?tan30°=
| ||
3 |
∴x=
1 |
y |
3 |
∴当x=
3 |
| ||
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询