已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2)=a,
已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2)=a,则f(2)=154154....
已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2)=a,则f(2)=154154.
展开
展开全部
根据题意,由f(x)+g(x)=ax-a-x+2,
则f(2)+g(2)=a2-a-2+2,①,f(-2)+g(-2)=a-2-a2+2,②
又由f(x)为奇函数而g(x)为偶函数,有f(-2)=-f(2),g(-2)=g(2),
则f(-2)+g(-2)=-f(2)+g(2),
即有-f(2)+g(2)=a-2-a2+2,③
联立①③可得,g(2)=2,f(2)=a2-a-2
又由g(2)=a,则a=2,
f(2)=22-2-2=4-
=
;
故答案为
.
则f(2)+g(2)=a2-a-2+2,①,f(-2)+g(-2)=a-2-a2+2,②
又由f(x)为奇函数而g(x)为偶函数,有f(-2)=-f(2),g(-2)=g(2),
则f(-2)+g(-2)=-f(2)+g(2),
即有-f(2)+g(2)=a-2-a2+2,③
联立①③可得,g(2)=2,f(2)=a2-a-2
又由g(2)=a,则a=2,
f(2)=22-2-2=4-
1 |
4 |
15 |
4 |
故答案为
15 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询