初三的二次函数的一道题 求详细过程 高手进(好的话追加30分 速度只有1个小时等了 明天还要上学)

就解题(2)要详细解释过程谢谢如图,抛物线y=-x^2+bx+c与x轴交与A(1,0),B(-3,0)两点(1)求该抛物线的解析式(不用写这道了我已经解出这道了答案是:y... 就解题(2) 要详细解释 过程 谢谢
如图,抛物线y=-x^2+bx+c与x轴交与A(1,0),B(-3,0)两点
(1)求该抛物线的解析式(不用写这道了 我已经解出这道了 答案是:y=-x^2-2x+3)

(2)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由
展开
玩YO的XX
2011-03-29 · TA获得超过1394个赞
知道小有建树答主
回答量:273
采纳率:0%
帮助的人:277万
展开全部
存在.
理由如下:设P点(x,-x2-2x+3)(-3<x<0)
∵S△BPC=S四边形BPCO-S△BOC=S四边形BPCO- 9/2
若S四边形BPCO有最大值,则S△BPC就最大,
∴S四边形BPCO=S△BPE+S直角梯形PEOC
=1/2 BE•PE+1/2 OE(PE+OC)
=-3/2(x+3/2)^2+9/2+27/8
当x=-3/2 时,S四边形BPCO最大值= 9/2+27/8
S△BPC最大= 9/2+27/8-9/2(10分)
当x=- 3/2时,-x2-2x+3= 15/4
∴点P坐标为(-3/2 , 15/4)
多少电风扇
2011-03-29 · TA获得超过131个赞
知道答主
回答量:53
采纳率:0%
帮助的人:59.6万
展开全部
答:由(1)可得:B(-3,0),C(0,3)。则直线AB的斜率为:k=1。则若要使△PBC的面积最大,则p点应为平行于AB的直线与抛物线的切点(可把AB当做△PBC的底边来理解,即要求三角形的高最大)。则可设该直线方程为:y=x+a。则把它与抛物线方程联立可解得:a=21/4。易知所求P点坐标为:(-3/2,15/4)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式