已知锐角A,B满足sinB=2cos(A+B)sinA,1 .求证:tan(a+b)=3tana 2 .求tanb的最大值。

dc271828
2011-03-31 · TA获得超过8115个赞
知道大有可为答主
回答量:2032
采纳率:100%
帮助的人:3288万
展开全部
sinB=2cos(A+B)sinA可化为
sin(A+B-A)=2cos(A+B)sinA,
即sin(A+B)cosA-cos(A+B)sinA=2cos(A+B)sinA,
即sin(A+B)cosA=3cos(A+B)sinA,
两边同除以cos(A+B)cosA得tan(A+B)=3tanA,
所以tanB=tan[(A+B)-A]
=(tan(A+B)-tanA]/[1+tan(A+B)tanA]
=2tanA/(1+3tanAtanA)≤2tanA/2√3tanA=√3/3.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式