请教如何证明一下几题微积分题目 20

第一题:假设函数f:R->R满足f(2x-f(x))=x设r为固定实数a)证明如果有y满足f(y)=y+r,则f(y-nr)=(y-nr)+rn为正整数b)证明,在a的条... 第一题:假设函数 f:R->R 满足f(2x - f(x)) = x
设r为固定实数
a)证明如果有y满足f(y)=y+r,则f(y-nr)=(y-nr)+r n为正整数
b)证明,在a的条件之上,如果f为单射函数,则f(y-nr)=(y-nr)+r n为整数

第二题:
假如函数f为单射函数并满足 lim x->a f(x) =f(a) 并f(0)=0 而且f(2x - f(x)) = x
证明 x为任意实数 f(x)=x
� f(x)) = x
展开
arongustc
科技发烧友

2011-04-17 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.3万
采纳率:66%
帮助的人:5932万
展开全部
a)利用数学归纳法证明
f(y)= y+r,(此时n=0)
假定f(y-nr) = (y-nr)+r对n=k成立则
f(y-(k+1)r) = f(2(y-(k+1)r+r) - (y-kr+r)) = f(2(y-kr) -f(y-kr)) = y-kr = (y-(k+1)r ) +r 也成立
因此这对所有正整数成立
b)我们假设k是最大的一个不满足上式得负整数,则
f(y-(k+1)r) = (y-(k+1)r)+r成立
而f(y-kr) = f(2(y-(k+1)r) - (y-(k+1)r +r) ) = f(2(y-(k+1)r) -f(y-(k+1)r)) = y-(k+1)r = y-kr+r
如果k是最大的一个不满足这个条件的负整数,则f(y-kr)必然有两个值,与f是单射矛盾
因此b)必然成立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式