如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.(1)求a的值及点B...
如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG. 记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围. 展开
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG. 记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围. 展开
展开全部
解:(1)∵点A(2,4)在抛物线C1上,
∴把点A坐标代入y=a(x+1)2-5得a=1,
∴抛物线C1的解析式为y=x2+2x-4,
设B(-2,b),
∴b=-4,
∴B(-2,-4);
(2)①如图
∵M(1,5),D(1,2),且DH⊥x轴,
∴点M在DH上,MH=5,
过点G作GE⊥DH,垂足为E,
由△DHG是正三角形,可得EG= ,EH=1,
∴ME=4,
设N(x,0),则NH=x-1,
由△MEG∽△MHN,得 ,
∴ ,
∴x= ,
∴点N的横坐标为 ;
②当点D移到与点A重合时,如图,
直线l与DG交于点G,此时点N的横坐标最大;
过点G,M作x轴的垂线,垂足分别为点Q,F,
设N(x,0),
∵A(2,4),
∴G( ,2),
∴NQ= ,NF=x-1,GQ=2,MF=5,
∵△NGQ∽△NMF,
∴ ,
∴ ,
∴ ,
当点D移到与点B重合时,如图:
直线l与DG交于点D,即点B,
此时点N的横坐标最小;
∵B(-2,-4),
∴H(-2,0),D(-2,-4),
设N(x,0),
∵△BHN∽△MFN,
∴ ,
∴ ,
∴ ,
∴点N横坐标的范围为 ≤x≤ .
∴把点A坐标代入y=a(x+1)2-5得a=1,
∴抛物线C1的解析式为y=x2+2x-4,
设B(-2,b),
∴b=-4,
∴B(-2,-4);
(2)①如图
∵M(1,5),D(1,2),且DH⊥x轴,
∴点M在DH上,MH=5,
过点G作GE⊥DH,垂足为E,
由△DHG是正三角形,可得EG= ,EH=1,
∴ME=4,
设N(x,0),则NH=x-1,
由△MEG∽△MHN,得 ,
∴ ,
∴x= ,
∴点N的横坐标为 ;
②当点D移到与点A重合时,如图,
直线l与DG交于点G,此时点N的横坐标最大;
过点G,M作x轴的垂线,垂足分别为点Q,F,
设N(x,0),
∵A(2,4),
∴G( ,2),
∴NQ= ,NF=x-1,GQ=2,MF=5,
∵△NGQ∽△NMF,
∴ ,
∴ ,
∴ ,
当点D移到与点B重合时,如图:
直线l与DG交于点D,即点B,
此时点N的横坐标最小;
∵B(-2,-4),
∴H(-2,0),D(-2,-4),
设N(x,0),
∵△BHN∽△MFN,
∴ ,
∴ ,
∴ ,
∴点N横坐标的范围为 ≤x≤ .
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询