27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A.
展开全部
要证明E-2A可逆
我们可以假设其可逆,并设其逆为aE+bA
则(E-2A)(aE+bA)=E
那么aE+(b-2a)A-2bA^2=E
又A^2=A
那么(a-1)E-(b+2a)A=0
所以a-1=0,b+2a=0
所以a=1,b=-2
故E-2A可逆,且其逆是(E-2A)^-1=E-2A
我们可以假设其可逆,并设其逆为aE+bA
则(E-2A)(aE+bA)=E
那么aE+(b-2a)A-2bA^2=E
又A^2=A
那么(a-1)E-(b+2a)A=0
所以a-1=0,b+2a=0
所以a=1,b=-2
故E-2A可逆,且其逆是(E-2A)^-1=E-2A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-03-25 广告
2024-03-25 广告
ASTM D4169-16标准是运用实际物流案例中具有代表性的和经过实践证明的一种试验方法,ASTM D4169-16有18个物流分配周期、10个危险因素和3个等级测试强度。10个危险因素分别为:A人工和机械操作(跌落、冲击和稳定性)、B仓...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询