设函数f(x)=x-lxnx,数列an满足0<a1<1,an+1=f(an) (1)证明:函数f(x)在区间(0,1)是增函数(
2个回答
展开全部
证明:(用数学归纳法)
(i)当n=1时,0<a1<1,a1lna1<0,
a2=f(a1)=a1-a1lna1>a1,
∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,
∴f(x)在区间(0,1]是增函数,
a2=f(a1)=a1-a1lna1<1,即a1<a2<1成立,
(ⅱ)假设当x=k(k∈N+)时,ak<ak+1<1成立,
即0<a1≤ak<ak+1<1,
那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤ak<ak+1<1,
得f(ak)<f(ak+1)<f(1),
而an+1=f(an),
则ak+1=f(ak),ak+2=f(ak+1),ak+1<ak+2<1,
也就是说当n=k+1时,an<an+1<1也成立,
根据(ⅰ)、(ⅱ)可得对任意的正整数n,an<an+1<1恒成立.
(i)当n=1时,0<a1<1,a1lna1<0,
a2=f(a1)=a1-a1lna1>a1,
∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,
∴f(x)在区间(0,1]是增函数,
a2=f(a1)=a1-a1lna1<1,即a1<a2<1成立,
(ⅱ)假设当x=k(k∈N+)时,ak<ak+1<1成立,
即0<a1≤ak<ak+1<1,
那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤ak<ak+1<1,
得f(ak)<f(ak+1)<f(1),
而an+1=f(an),
则ak+1=f(ak),ak+2=f(ak+1),ak+1<ak+2<1,
也就是说当n=k+1时,an<an+1<1也成立,
根据(ⅰ)、(ⅱ)可得对任意的正整数n,an<an+1<1恒成立.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询