如果正实数x、y、z满足x^3+y^3+z^3-3xyz=1,求x^2+y^2+z^2的最小值

"正实数"改为"非负实数"... "正实数"改为"非负实数" 展开
yuezhyun
2011-04-14 · TA获得超过6905个赞
知道大有可为答主
回答量:2097
采纳率:100%
帮助的人:885万
展开全部
由对烂激局称性, 无妨设x>=y>=z>=0; 显然不能全部相等 ,否则0=1 ,不可能;
条件化为 (x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]=2,
即:[(x-y)^2+(y-z)^2+(z-x)^2]=2/(x+y+z)
所以 x^2+y^2+z^2={(x+y+z)^2+ [(x-y)^2+(y-z)^2+(z-x)^2]}/饥让3
={(x+y+z)^2+2/(x+y+z)}/3={(x+y+z)^2+1/(x+Y+z)+1/(x+Y+z)}/3
>={(x+y+z)^2*1/(x+Y+z)*1/(x+Y+z)}^(1/3)=1
取等号条件是x+y+z=1, x^2+z^2+z^2=1, xy+xz+yz=0,从而铅尺 x(1-x)+yz=0,
所以 y=z=0,x=1 ,时最小值为1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式