已知x1、x2是一元二次方程4kx^2-4kx+1=0的两个实数根。1、是否存在实数k 使(2x1-x2)(x1-2x2)=—3/2成立

找出类似的10题,灰常急,已知x1、x2是一元二次方程4kx^2-4kx+1=0的两个实数根。1、是否存在实数k使(2x1-x2)(x1-2x2)=—3/2成立?若存在求... 找出类似的10题,灰常急,
已知x1、x2是一元二次方程4kx^2-4kx+1=0的两个实数根。1、是否存在实数k 使(2x1-x2)(x1-2x2)=—3/2成立?若存在求出k的值。若不存在。请说明理由。 2、求使x1/x2+x2/x1-2的值为整数的实数k的整数值。
要有解 谢谢
展开
nana杜雨婷
2011-04-13 · TA获得超过927个赞
知道答主
回答量:128
采纳率:0%
帮助的人:69.2万
展开全部
1、x1、x2是一元二次方程4kx^2-4kx+1=0的两个实数根
∴△=(-4k)^2-16k≥0 k(k-1)≥0 ∴ k≥1或k≤0
假设存在实数k 使(2x1-x2)(x1-2x2)=—3/2成立,则
(2x1-x2)(x1-2x2)=2(x1)^2+2(x2)^2-5x1x2=2(x1+x2)^2-9x1x2
∵x1+x2=1 x1x2=1/(4k)
∴(2x1-x2)(x1-2x2)=2-9/(4k)=-3/2 ∴k=9/14
又k≥1或k≤0
∴不存在实数k 使(2x1-x2)(x1-2x2)=—3/2成立
2、x1/x2+x2/x1-2=[(x1)^2+(x2)^2]/(x1x2)-2=[(x1+x2)^2-2x1x2]/(x1x2)-2
=[1-1/(2k)]*(4k)-2=4k-4
要使x1/x2+x2/x1-2的值为整数 即使4k-4的值为整数
∴k为整数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式