初三数学 急急!在线等!加分的!!
①求∠BAC的度数;
②将△沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H,求证:四边形AFHG是正方形;
③若BD=6,CD=4,求AD的长。
25.(10分)探究问题
(1)阅读理解:
①如图1,在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
②如图2,若四边形ABCD的四个顶点在同一个圆上,则有AB•CD+BC•AD=AC•BD.此为托勒密定理.
(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图3,已知点P为等边△ABC外接圆的BC⌒上任意一点.求证:PB+PC=PA.
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120º)的费马点和费马距离的方法:
第一步:如图4,在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在BC⌒上取一点P0,连接P0A、P0B、P0C、P0D.
易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+ ;
第三步:请你根据(1)①中定义,在图4中找出△ABC的费马点P,线段 的长度即为△ABC的费马距离.
(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难.为解决老百姓饮水问题,解放军某部到云南某地打井取水.
已知三村庄A、B、C构成了如图5所示的△ABC(其中∠A、∠B、∠C均小于120º),现选取一点P打水井,使水井P到三村庄A、B、C所铺设的输水管总长度最小.求输水管总长度的最小值. 展开
一、先解决上题。
如图一所示:
①连接OA、OB、OC、过点O作OM⊥AD于M,
因为:OE⊥BC
由垂径定理可知:BE=CE加上OE=1/2BC
能够推出OE=BE=CE
所以∠1=∠2=45°而∠BAC=1/2∠BOC=45°
②由折叠可知:∠G=∠F=90°∠3+∠4=∠BAC=45°
所以:∠GAF=90°加上AG=AF=AD
对于四边形AFHG来说,就有三个角是直角,并且有一组邻边相等
所以四边形AFHG是正方形。
③BD=6,CD=4可知:BC=10、OE=BE=CE=5
所以OA=OB= 5√2, OM=ED=1
在直角△AOM中可求出AM=7又知DM=OE=5
所以:AD=12
二、关于探究问题的解答,你原题中没有图形,并且数字不全,根据意思回答如下:
(2)知识迁移之①由托勒密定理可知:PB•AC+PC•AB=PA•BC.
而AC=AB=BC.约分可得PB+PC=PA(这个你自己作图可知)。
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120º)的费马点和费马距离的方法:
第一步:如图二,在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在BC⌒上取一点P0,连接P0A、P0B、P0C、P0D.
易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+P0D(此处没有,想来是一个填空)
第三步:请你根据(1)①中定义,在图4中找出△ABC的费马点P,线段(AD) 的长度即为△ABC的费马距离.
关于第三步的解释:连接AD交BC⌒于点P,点P就是费马点,AD=PA+PB+PC就是费马距离,由于PA与PD此时在一条直线上,因而其和总小于其他地方的P0A+P0D。
(3)中的知识应用作法同上,不过你的图5我没有看到,费马距离就没法具体来求了,只能给你一般的求法,假如知道三角形的三边abc,则由高中要学的正余弦定理和海伦公式能够推出AD=PA+PB+PC=√{(a^2+b^2+c^2+√[3(a+b+c)(a+b-c)(b+c-a)(c+a-b)])/2}。
当然,如果你的数字比较特殊,我们应该还有简单的具体求法。
说明:由于百度知道里面只能上传一个图片,图二就没法显示了,放在我的QQ空间里面,你自己去看吧,地址在下面。
初三的学生能够思考到这些问题,的确是不容易的,看来你是一个挺聪明用功的学生,祝你好运!
参考资料: http://user.qzone.qq.com/502417897/infocenter