在数列{an}中,a1=3,an=-a(n-1)-4n(n≥2,且n∈N*),数列{an}的前n项和Sn

(1)证明:数列{an+2n+1}是等比数列,并求{an}的通项公式(2)求Sn要详细过程~谢谢... (1)证明:数列{an+2n+1}是等比数列,并求{an}的通项公式
(2)求Sn
要详细过程~谢谢
展开
xuzhouliuying
高粉答主

2011-04-23 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
(1)
证:
an=-a(n-1)-4n
an+2n+1=-a(n-1)-2n+1=-a(n-1)-2(n-1)-1
(an+2n+1)/[a(n-1)+2(n-1)+1]=-1,为定值。
a1+2+1=3+2+1=6
数列{an+2n+1}是以6为首项,-1为公比的等比数列。
an+2n+1=6×(-1)^(n-1)=-6×(-1)^n
an=-2n-1+6×(-1)^(n-1)=-2n-1-6×(-1)^n
(2)
Sn=a1+a2+...+an
=-2(1+2+...n)-n-6×[(-1)^1+(-1)^2+...+(-1)^n]
=-n(n+1)-n-6×(-1)×[(-1)^n-1]/(-1-1)
=-n²-2n-3×[(-1)^n-1]
银高但如雪
2019-02-15 · TA获得超过3539个赞
知道大有可为答主
回答量:3157
采纳率:31%
帮助的人:422万
展开全部
b2n=(2n+2)*(9/10)^(2n)
对n求导有,2(9/10)^(2n)+2(2n+2)ln(9/10)(9/10)^(2n),(1)
令(1)为0,则有(2n+2)ln(9/10)+1=0
则接近0的地方n=3或者是4,
则将3或者是4代入b2n比较两者大小
有b6=8*(9/10)^6
b8=10*(9/10)^8
b8更大,则最大值为b8=10*(9/10)^8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式