若cos^2x-sinx+a=0有解,则a的取值范围
4个回答
展开全部
解:cos^2x-sinx+a=0
1-sin^2x-sinx+a=0
sin^2+sinx-(a+1)=0 由维达定理判别条件解得a>=-5/4
当sinx=-1/2时得最小值a=-5/4
当sinx=1时得最大值a=1
所以-5/4<=a<=1
1-sin^2x-sinx+a=0
sin^2+sinx-(a+1)=0 由维达定理判别条件解得a>=-5/4
当sinx=-1/2时得最小值a=-5/4
当sinx=1时得最大值a=1
所以-5/4<=a<=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
cos^2x-sinx+a=0
a=sinx-cos^2x
=sinx-1+sin^2x
=sin^2x+sinx+1/4-1-1/4
=(sinx+1/2)^2-5/4
当sinx=-1/2时得最小值a=-5/4
当sinx=1时得最大值a=1
所以-5/4<=a<=1
a=sinx-cos^2x
=sinx-1+sin^2x
=sin^2x+sinx+1/4-1-1/4
=(sinx+1/2)^2-5/4
当sinx=-1/2时得最小值a=-5/4
当sinx=1时得最大值a=1
所以-5/4<=a<=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-04-28 · 知道合伙人教育行家
关注
展开全部
cos^2x-sinx+a=0
1-sin^2x-sinx+a=0
sin^2x+sinx=(a+1)
(sinx+1/2)^2=a+5/4
-1 ≤ sinx ≤ 1
-1/2 ≤ sinx +1/2 ≤ 3/2
0 ≤ (sinx+1/2)^2 ≤ 9/4
∴0 ≤ a+5/4 ≤ 9/4
-5/4 ≤ a ≤ 1
1-sin^2x-sinx+a=0
sin^2x+sinx=(a+1)
(sinx+1/2)^2=a+5/4
-1 ≤ sinx ≤ 1
-1/2 ≤ sinx +1/2 ≤ 3/2
0 ≤ (sinx+1/2)^2 ≤ 9/4
∴0 ≤ a+5/4 ≤ 9/4
-5/4 ≤ a ≤ 1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a=sinx-cos^2x
= sinx-(cos2x-sin2x)
= sinx-(1-sin2x-sin2x)
=2sin2x+ sinx-1
=2(sinx+?)2-9/8
-1≤sinx≤1, -?≤ sinx+?≤5/4, 0≤ 2(sinx+?)2≤25/16,
-9/8≤ 2(sinx+?)2-9/8≤7/16,
a∈[-9/8, 7/16]
= sinx-(cos2x-sin2x)
= sinx-(1-sin2x-sin2x)
=2sin2x+ sinx-1
=2(sinx+?)2-9/8
-1≤sinx≤1, -?≤ sinx+?≤5/4, 0≤ 2(sinx+?)2≤25/16,
-9/8≤ 2(sinx+?)2-9/8≤7/16,
a∈[-9/8, 7/16]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询