初中八年级数学平行四边形的判定,里的一道题,会的帮忙解下.
如图,在平行四边形ABCD中,∠ABC=75°,AF⊥BC于点F,交BD于点E,若DE=2AB,求∠AED的度数。要有过程,而且要详细点,...
如图,在平行四边形ABCD中,∠ABC=75°,AF⊥BC于点F,交BD于点E,若DE=2AB,求∠AED的度数。要有过程,而且要详细点,
展开
展开全部
解:取DE中点G,连接AG
∵AD//BC,AF⊥BC于点F
∴∠ADG=∠CBG ①
∠BAE=∠AFB-∠ABF=∠AFB-∠ABC=90°-75°=15° ②
AF⊥AD
从而AG是直角三角形ADE斜边DE上的中线
∴AG=1/2DE=GD=GE=AB
则 ∠DAG=∠ADG,∠AGB=∠ABG
设∠ADG=X
那么 ∠DAG=∠GDA=X,
∠AGB=∠ABG=∠ABC-∠CBG=∠ABC-∠ADG=75°-X [由①已得∠ADG=∠CBG ] ③
又 ∠AGB是三角形ADG的外角
从而 ∠AGB=∠DAG+∠ADG=X+X=2X ④
由③④得 75°-X=2X
∴X=25°
从而 ∠ABG=∠ABC-∠CBG=75°-X=75°-25°=50° ⑤
∴ 由②⑤得 ∠AED=∠BAE+∠ABG=15°+50°=65°
∵AD//BC,AF⊥BC于点F
∴∠ADG=∠CBG ①
∠BAE=∠AFB-∠ABF=∠AFB-∠ABC=90°-75°=15° ②
AF⊥AD
从而AG是直角三角形ADE斜边DE上的中线
∴AG=1/2DE=GD=GE=AB
则 ∠DAG=∠ADG,∠AGB=∠ABG
设∠ADG=X
那么 ∠DAG=∠GDA=X,
∠AGB=∠ABG=∠ABC-∠CBG=∠ABC-∠ADG=75°-X [由①已得∠ADG=∠CBG ] ③
又 ∠AGB是三角形ADG的外角
从而 ∠AGB=∠DAG+∠ADG=X+X=2X ④
由③④得 75°-X=2X
∴X=25°
从而 ∠ABG=∠ABC-∠CBG=75°-X=75°-25°=50° ⑤
∴ 由②⑤得 ∠AED=∠BAE+∠ABG=15°+50°=65°
展开全部
取DE的中点G,连接AG;
由AF⊥BC,AD平行BC,得∠DAE=90°,三角形ADE为直角三角形,
由直角三角形斜边中线等于斜边的一半得到,AG=DE/2,而DE=2AB,所以AG=AB,
所以三角形GAB为等腰三角形,所以∠ABD=∠AGB;
而AG=DG得到,∠ABD=∠DAG+∠ADB=2∠ADB=2∠DBC,而75°=∠ABC=∠ABD+∠DBC=3∠DBC,所以∠DBC=75°/3=25°,
所以∠AED=∠BEF=90°-∠DBC=90°-25°=65°
由AF⊥BC,AD平行BC,得∠DAE=90°,三角形ADE为直角三角形,
由直角三角形斜边中线等于斜边的一半得到,AG=DE/2,而DE=2AB,所以AG=AB,
所以三角形GAB为等腰三角形,所以∠ABD=∠AGB;
而AG=DG得到,∠ABD=∠DAG+∠ADB=2∠ADB=2∠DBC,而75°=∠ABC=∠ABD+∠DBC=3∠DBC,所以∠DBC=75°/3=25°,
所以∠AED=∠BEF=90°-∠DBC=90°-25°=65°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:取DE中点G,连接AG
∵AD//BC,AF⊥BC于点F
∴∠ADG=∠CBG ①
∠BAE=∠AFB-∠ABF=∠AFB-∠ABC=90°-75°=15° ②
AF⊥AD
从而AG是直角三角形ADE斜边DE上的中线
∴AG=1/2DE=GD=GE=AB
则 ∠DAG=∠ADG,∠AGB=∠ABG
设∠ADG=X
那么 ∠DAG=∠GDA=X,
∠AGB=∠ABG=∠ABC-∠CBG=∠ABC-∠ADG=75°-X [由①已得∠ADG=∠CBG ] ③
又 ∠AGB是三角形ADG的外角
从而 ∠AGB=∠DAG+∠ADG=X+X=2X ④
由③④得 75°-X=2X
∴X=25°
从而 ∠ABG=∠ABC-∠CBG=75°-X=75°-25°=50° ⑤
∴ 由②⑤得 ∠AED=∠BAE+∠ABG=15°+50°=65°
取DE的中点G,连接AG;
由AF⊥BC,AD平行BC,得∠DAE=90°,三角形ADE为直角三角形,
由直角三角形斜边中线等于斜边的一半得到,AG=DE/2,而DE=2AB,所以AG=AB,
所以三角形GAB为等腰三角形,所以∠ABD=∠AGB;
而AG=DG得到,∠ABD=∠DAG+∠ADB=2∠ADB=2∠DBC,而75°=∠ABC=∠ABD+∠DBC=3∠DBC,所以∠DBC=75°/3=25°,
所以∠AED=∠BEF=90°-∠DBC=90°-25°=65°
∵AD//BC,AF⊥BC于点F
∴∠ADG=∠CBG ①
∠BAE=∠AFB-∠ABF=∠AFB-∠ABC=90°-75°=15° ②
AF⊥AD
从而AG是直角三角形ADE斜边DE上的中线
∴AG=1/2DE=GD=GE=AB
则 ∠DAG=∠ADG,∠AGB=∠ABG
设∠ADG=X
那么 ∠DAG=∠GDA=X,
∠AGB=∠ABG=∠ABC-∠CBG=∠ABC-∠ADG=75°-X [由①已得∠ADG=∠CBG ] ③
又 ∠AGB是三角形ADG的外角
从而 ∠AGB=∠DAG+∠ADG=X+X=2X ④
由③④得 75°-X=2X
∴X=25°
从而 ∠ABG=∠ABC-∠CBG=75°-X=75°-25°=50° ⑤
∴ 由②⑤得 ∠AED=∠BAE+∠ABG=15°+50°=65°
取DE的中点G,连接AG;
由AF⊥BC,AD平行BC,得∠DAE=90°,三角形ADE为直角三角形,
由直角三角形斜边中线等于斜边的一半得到,AG=DE/2,而DE=2AB,所以AG=AB,
所以三角形GAB为等腰三角形,所以∠ABD=∠AGB;
而AG=DG得到,∠ABD=∠DAG+∠ADB=2∠ADB=2∠DBC,而75°=∠ABC=∠ABD+∠DBC=3∠DBC,所以∠DBC=75°/3=25°,
所以∠AED=∠BEF=90°-∠DBC=90°-25°=65°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:取DE中点G,连接AG
∵AD//BC,AF⊥BC于点F
∴∠ADG=∠CBG ①
∠BAE=∠AFB-∠ABF=∠AFB-∠ABC=90°-75°=15° ②
AF⊥AD
从而AG是直角三角形ADE斜边DE上的中线
∴AG=1/2DE=GD=GE=AB
则 ∠DAG=∠ADG,∠AGB=∠ABG
设∠ADG=X
那么 ∠DAG=∠GDA=X,
∠AGB=∠ABG=∠ABC-∠CBG=∠ABC-∠ADG=75°-X [由①已得∠ADG=∠CBG ] ③
又 ∠AGB是三角形ADG的外角
从而 ∠AGB=∠DAG+∠ADG=X+X=2X ④
由③④得 75°-X=2X
∴X=25°
从而 ∠ABG=∠ABC-∠CBG=75°-X=75°-25°=50° ⑤
∴ 由②⑤得 ∠AED=∠BAE+∠ABG=15°+50°=65°
∵AD//BC,AF⊥BC于点F
∴∠ADG=∠CBG ①
∠BAE=∠AFB-∠ABF=∠AFB-∠ABC=90°-75°=15° ②
AF⊥AD
从而AG是直角三角形ADE斜边DE上的中线
∴AG=1/2DE=GD=GE=AB
则 ∠DAG=∠ADG,∠AGB=∠ABG
设∠ADG=X
那么 ∠DAG=∠GDA=X,
∠AGB=∠ABG=∠ABC-∠CBG=∠ABC-∠ADG=75°-X [由①已得∠ADG=∠CBG ] ③
又 ∠AGB是三角形ADG的外角
从而 ∠AGB=∠DAG+∠ADG=X+X=2X ④
由③④得 75°-X=2X
∴X=25°
从而 ∠ABG=∠ABC-∠CBG=75°-X=75°-25°=50° ⑤
∴ 由②⑤得 ∠AED=∠BAE+∠ABG=15°+50°=65°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:取DE中点G,连接AG
∵AD//BC,AF⊥BC于点F
∴∠ADG=∠CBG ①
∠BAE=∠AFB-∠ABF=∠AFB-∠ABC=90°-75°=15° ②
AF⊥AD
从而AG是直角三角形ADE斜边DE上的中线
∴AG=1/2DE=GD=GE=AB
则 ∠DAG=∠ADG,∠AGB=∠ABG
设∠ADG=X
那么 ∠DAG=∠GDA=X,
∠AGB=∠ABG=∠ABC-∠CBG=∠ABC-∠ADG=75°-X [由①已得∠ADG=∠CBG ] ③
又 ∠AGB是三角形ADG的外角
从而 ∠AGB=∠DAG+∠ADG=X+X=2X ④
由③④得 75°-X=2X
∴X=25°
从而 ∠ABG=∠ABC-∠CBG=75°-X=75°-25°=50° ⑤
∴ 由②⑤得 ∠AED=∠BAE+∠ABG=15°+50°=65°
∵AD//BC,AF⊥BC于点F
∴∠ADG=∠CBG ①
∠BAE=∠AFB-∠ABF=∠AFB-∠ABC=90°-75°=15° ②
AF⊥AD
从而AG是直角三角形ADE斜边DE上的中线
∴AG=1/2DE=GD=GE=AB
则 ∠DAG=∠ADG,∠AGB=∠ABG
设∠ADG=X
那么 ∠DAG=∠GDA=X,
∠AGB=∠ABG=∠ABC-∠CBG=∠ABC-∠ADG=75°-X [由①已得∠ADG=∠CBG ] ③
又 ∠AGB是三角形ADG的外角
从而 ∠AGB=∠DAG+∠ADG=X+X=2X ④
由③④得 75°-X=2X
∴X=25°
从而 ∠ABG=∠ABC-∠CBG=75°-X=75°-25°=50° ⑤
∴ 由②⑤得 ∠AED=∠BAE+∠ABG=15°+50°=65°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
取DE中点G,连接AG
∵AD//BC,AF⊥BC于点F
∴∠ADG=∠CBG ①
∠BAE=∠AFB-∠ABF=∠AFB-∠ABC=90°-75°=15° ②
AF⊥AD
从而AG是直角三角形ADE斜边DE上的中线...........
∵AD//BC,AF⊥BC于点F
∴∠ADG=∠CBG ①
∠BAE=∠AFB-∠ABF=∠AFB-∠ABC=90°-75°=15° ②
AF⊥AD
从而AG是直角三角形ADE斜边DE上的中线...........
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询