8个回答
展开全部
分析:首先在△ABD中,由三角形的外角性质得到∠EDC+∠2=∠B+40°,同理可得到∠1=∠EDC+∠C,联立两个式子,结合∠B=∠C,∠1=∠2的已知条件,即可求出∠EDC的度数.
解:△ABD中,由三角形的外角性质知:
∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①
同理,得:∠2=∠EDC+∠C,
已知∠1=∠2,∠B=∠C,
∴∠1=∠EDC+∠B,②
②代入①得:
2∠EDC+∠B=∠B+40°,即∠EDC=20°
解:△ABD中,由三角形的外角性质知:
∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①
同理,得:∠2=∠EDC+∠C,
已知∠1=∠2,∠B=∠C,
∴∠1=∠EDC+∠B,②
②代入①得:
2∠EDC+∠B=∠B+40°,即∠EDC=20°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:首先在△ABD中,由三角形的外角性质得到∠EDC+∠2=∠B+40°,同理可得到∠1=∠EDC+∠C,联立两个式子,结合∠B=∠C,∠1=∠2的已知条件,即可求出∠EDC的度数.
解:△ABD中,由三角形的外角性质知:
∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①
同理,得:∠2=∠EDC+∠C,
已知∠1=∠2,∠B=∠C,
∴∠1=∠EDC+∠B,②
②代入①得:
2∠EDC+∠B=∠B+40°,即∠EDC=20°
解:△ABD中,由三角形的外角性质知:
∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①
同理,得:∠2=∠EDC+∠C,
已知∠1=∠2,∠B=∠C,
∴∠1=∠EDC+∠B,②
②代入①得:
2∠EDC+∠B=∠B+40°,即∠EDC=20°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:△ABD中,由三角形的外角性质知:
∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①
同理,得:∠2=∠EDC+∠C,
已知∠1=∠2,∠B=∠C,
∴∠1=∠EDC+∠B,②
②代入①得:
2∠EDC+∠B=∠B+40°,即∠EDC=20°
∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①
同理,得:∠2=∠EDC+∠C,
已知∠1=∠2,∠B=∠C,
∴∠1=∠EDC+∠B,②
②代入①得:
2∠EDC+∠B=∠B+40°,即∠EDC=20°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
角ADB=角DAC+角C,角ADB+角B+40度=180度,角B=角C,所以,角DAC+2角C+40度=180度,在三角形ADC中,角DAC=180度-2角1,所以,2角1-2角C=40度,即2角EDC=40度,角EDC=20度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |