高一三角函数题

WY070135
2011-05-02 · TA获得超过4.7万个赞
知道大有可为答主
回答量:2444
采纳率:100%
帮助的人:1706万
展开全部
解:
f(x)=2√3sinxcosx+2cos²x-1
=√3(2sinxcosx)+(2cos²x-1)
=√3sin2x+cos2x
=2sin(2x+π/6)
∵f(x0)=6/5
∴2sin(2x0+π/6)=6/5
sin(2x0+π/6)=3/5
由x0∈[π/4,π/2],得:2x0+π/6∈[2π/3,7π/6]
∴cos(2x0+π/6)=-√[1-sin²(2x0+π/6)]=-4/5
∴cos2x0=cos[(2x0+π/6)-π/6]=cos(2x0+π/6)cosπ/6+sin(2x0+π/6)sinπ/6=(3-4√3)/10
匡梦旋7o
2011-05-02
知道答主
回答量:61
采纳率:0%
帮助的人:19.2万
展开全部
f(X)=√3sin2x+cos2x=2sin(2x+30度),因为f(x)=6/5,所以sin(2x+30度),=3/5,所以√3sin2x+cos2x=3/5,因为(sin2x)2+(cos2x)2=1,所以 cos2x=(3-4√3)/10
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式