高一三角函数题
2个回答
展开全部
解:
f(x)=2√3sinxcosx+2cos²x-1
=√3(2sinxcosx)+(2cos²x-1)
=√3sin2x+cos2x
=2sin(2x+π/6)
∵f(x0)=6/5
∴2sin(2x0+π/6)=6/5
sin(2x0+π/6)=3/5
由x0∈[π/4,π/2],得:2x0+π/6∈[2π/3,7π/6]
∴cos(2x0+π/6)=-√[1-sin²(2x0+π/6)]=-4/5
∴cos2x0=cos[(2x0+π/6)-π/6]=cos(2x0+π/6)cosπ/6+sin(2x0+π/6)sinπ/6=(3-4√3)/10
f(x)=2√3sinxcosx+2cos²x-1
=√3(2sinxcosx)+(2cos²x-1)
=√3sin2x+cos2x
=2sin(2x+π/6)
∵f(x0)=6/5
∴2sin(2x0+π/6)=6/5
sin(2x0+π/6)=3/5
由x0∈[π/4,π/2],得:2x0+π/6∈[2π/3,7π/6]
∴cos(2x0+π/6)=-√[1-sin²(2x0+π/6)]=-4/5
∴cos2x0=cos[(2x0+π/6)-π/6]=cos(2x0+π/6)cosπ/6+sin(2x0+π/6)sinπ/6=(3-4√3)/10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询