求二重积分 ∫∫ √4-x²-y² dxdy
求二重积分为∫∫√4-x²-y²dxdy其中积分区域D为x²+y²=1上半圆与x²+y²=2y下半圆围成的图形...
求二重积分 为 ∫∫ √4-x²-y² dxdy 其中积分区域D 为x²+y²=1上半圆 与x²+y²=2y下半圆围成的图形
被积函数为 根号下 (4-x²-y²)
式子好求,关键是我积不出来,积分过程要详细,无论是直角坐标还是极坐标,这个定积分怎么才能积出来
大哥,你算的是错的呀 展开
被积函数为 根号下 (4-x²-y²)
式子好求,关键是我积不出来,积分过程要详细,无论是直角坐标还是极坐标,这个定积分怎么才能积出来
大哥,你算的是错的呀 展开
1个回答
展开全部
嗯,幅角看错了一点,改了。
圆x²+y²=1 与圆x²+y²=2y (或x²+(y-1)²=1 )的交点为
(√3/2 , 1/2) 和 (-√3/2 , 1/2) 。
这两点的极坐标分别为 (r=1, a=π/6) (r=1, a=5π/6)
而 x²+y²=2y 则化为 r²=2r sin a,即 r=2sin a。
两个交点把D分为3部分:
1. 幅角a范围为 0 到 π/6, 极半径 r介于0到2sin a之间
2. 幅角a范围为 π/6 到 5π/6, 极半径 r介于0到1之间
3. 幅角a范围为 5π/6 到 π, 极半径 r介于0到2sin a之间
所以用极坐标,积分化为三个积分相加
∫∫ D √4-x²-y² dxdy
= ∫ _(0<=a<=π/6) da ∫_(0<=r<=2sina) (√4-r²) rdr
+ ∫ _(π/6<=a<=5π/6) da ∫_(0<=r<=1) (√4-r²) rdr
+ ∫ _(5π/6<=a<=π) da ∫_(0<=r<=2sina) (√4-r²) rdr
=∫ _(0<=a<=π/6) da ∫_(0<=r<=2sina) (√4-r²)/2 dr²
+∫ _(π/6<=a<=5π/6) da ∫_(0<=r<=1) (√4-r²)/2 dr²
+∫ _(5π/6<=a<=π) da ∫_(0<=r<=2sina) (√4-r²)/2 dr²
=∫ _(0<=a<=π/6) da { (4-0²)^(3/2) / 3 - [4-(2sina)²]^(3/2) / 3 }
+∫ _(π/6<=a<=5π/6) da { (4-0²)^(3/2) / 3 - [4-1²]^(3/2) / 3 }
+∫ _(5π/6<=a<=π) da { (4-0²)^(3/2) / 3 - [4-(2sina)²]^(3/2) / 3 }
=∫ _(0<=a<=π/6) (8/3)[1-(cosa)^3]da + (2π/3) (8/3 - √3)
+ ∫ _(5π/6<=a<=π) (8/3)[1+(cosa)^3]da (5π/6<=a<=π, cos a <0, 开根号取 - cos a)
=(8/3)(π/6) - (8/3)∫ _(0<=a<=π/6) (cosa)^3 da + (2π/3) (8/3 - √3)
+ (8/3)(π/6) + (8/3)∫ _(5π/6<=a<=π) (cosa)^3 da
=(8-2√3)π/3 - (8/3) { ∫ _(0<=a<=π/6) [1-(sina)^2] d(sina)
- ∫ _(5π/6<=a<=π) [1-(sina)^2] d(sina) }
=(8-2√3)π/3 - (8/3){sin(π/6) - [sin(π/6) ]^3 / 3 + sin(5π/6) - [sin(5π/6) ]^3 / 3 }
= (8-2√3)π/3 - (8/3)*2*[1/2 - (1/2)^3/3] = (8-2√3)π/3 - 22/9
圆x²+y²=1 与圆x²+y²=2y (或x²+(y-1)²=1 )的交点为
(√3/2 , 1/2) 和 (-√3/2 , 1/2) 。
这两点的极坐标分别为 (r=1, a=π/6) (r=1, a=5π/6)
而 x²+y²=2y 则化为 r²=2r sin a,即 r=2sin a。
两个交点把D分为3部分:
1. 幅角a范围为 0 到 π/6, 极半径 r介于0到2sin a之间
2. 幅角a范围为 π/6 到 5π/6, 极半径 r介于0到1之间
3. 幅角a范围为 5π/6 到 π, 极半径 r介于0到2sin a之间
所以用极坐标,积分化为三个积分相加
∫∫ D √4-x²-y² dxdy
= ∫ _(0<=a<=π/6) da ∫_(0<=r<=2sina) (√4-r²) rdr
+ ∫ _(π/6<=a<=5π/6) da ∫_(0<=r<=1) (√4-r²) rdr
+ ∫ _(5π/6<=a<=π) da ∫_(0<=r<=2sina) (√4-r²) rdr
=∫ _(0<=a<=π/6) da ∫_(0<=r<=2sina) (√4-r²)/2 dr²
+∫ _(π/6<=a<=5π/6) da ∫_(0<=r<=1) (√4-r²)/2 dr²
+∫ _(5π/6<=a<=π) da ∫_(0<=r<=2sina) (√4-r²)/2 dr²
=∫ _(0<=a<=π/6) da { (4-0²)^(3/2) / 3 - [4-(2sina)²]^(3/2) / 3 }
+∫ _(π/6<=a<=5π/6) da { (4-0²)^(3/2) / 3 - [4-1²]^(3/2) / 3 }
+∫ _(5π/6<=a<=π) da { (4-0²)^(3/2) / 3 - [4-(2sina)²]^(3/2) / 3 }
=∫ _(0<=a<=π/6) (8/3)[1-(cosa)^3]da + (2π/3) (8/3 - √3)
+ ∫ _(5π/6<=a<=π) (8/3)[1+(cosa)^3]da (5π/6<=a<=π, cos a <0, 开根号取 - cos a)
=(8/3)(π/6) - (8/3)∫ _(0<=a<=π/6) (cosa)^3 da + (2π/3) (8/3 - √3)
+ (8/3)(π/6) + (8/3)∫ _(5π/6<=a<=π) (cosa)^3 da
=(8-2√3)π/3 - (8/3) { ∫ _(0<=a<=π/6) [1-(sina)^2] d(sina)
- ∫ _(5π/6<=a<=π) [1-(sina)^2] d(sina) }
=(8-2√3)π/3 - (8/3){sin(π/6) - [sin(π/6) ]^3 / 3 + sin(5π/6) - [sin(5π/6) ]^3 / 3 }
= (8-2√3)π/3 - (8/3)*2*[1/2 - (1/2)^3/3] = (8-2√3)π/3 - 22/9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询