求大神!!
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
1个回答
展开全部
先解这个:(n+2)/[n!+(n+1)!+(n+2)!]
=(n+2)/[n!*(1+(n+1)+(n+1)(n+2))]
=(n+2)/[n!*(n+2)^2]
=1/[n!(n+2)]
=(n+1)/[n!(n+1)(n+2)]
=(n+1)/(n+2)!
=(n+2-1)/(n+2)!
=1/(n+1)!-1/(n+2)!
∴原式:3/(1!+2!+3!)+4/(2!+3!+4!)+...+(n+2)/[n!+(n+1)!+(n+2)!]
=(1/2!-1/3!)+(1/3!-1/4!)+...+(1/(n+1)!-1/(n+2)!)
=1/2-1/(n+2)!
=(n+2)/[n!*(1+(n+1)+(n+1)(n+2))]
=(n+2)/[n!*(n+2)^2]
=1/[n!(n+2)]
=(n+1)/[n!(n+1)(n+2)]
=(n+1)/(n+2)!
=(n+2-1)/(n+2)!
=1/(n+1)!-1/(n+2)!
∴原式:3/(1!+2!+3!)+4/(2!+3!+4!)+...+(n+2)/[n!+(n+1)!+(n+2)!]
=(1/2!-1/3!)+(1/3!-1/4!)+...+(1/(n+1)!-1/(n+2)!)
=1/2-1/(n+2)!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询