设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f′(ξ)=0....
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f′(ξ)=0.
展开
3个回答
引用蘇荷‖rumb°的回答:
因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m,于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,故:m≤f(0)+f(1)+f(2)3≤M,由介值定理知,至少存在一点c∈[0,2],使得:f(c)=f(0)+f(1)+f(2)3=1,又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,满足罗尔定理的条件,故:必存在ξ∈(c,3)?(0,3),使f′(ξ)=0.
因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m,于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,故:m≤f(0)+f(1)+f(2)3≤M,由介值定理知,至少存在一点c∈[0,2],使得:f(c)=f(0)+f(1)+f(2)3=1,又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,满足罗尔定理的条件,故:必存在ξ∈(c,3)?(0,3),使f′(ξ)=0.
展开全部
为什么要考虑到[0,2]呢?如果直接是[0,3]上f(0) f(1) f(2)都可以取到[m,M]之间的值啊,那c就属于[0,3]了,再用罗尔定理做茄,取汪圆[c,3]应该可以的吧?不纯陵察明白为什么用到[0,2],求解答。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询