已知等差数列{an}的公差d=2,首项a1=5.(1)求数列{an}的前n项和Sn;(2)设Tn=n(2an-5),求S1,S2,S
已知等差数列{an}的公差d=2,首项a1=5.(1)求数列{an}的前n项和Sn;(2)设Tn=n(2an-5),求S1,S2,S3,S4,S5;T1,T2,T3,T4...
已知等差数列{an}的公差d=2,首项a1=5.(1)求数列{an}的前n项和Sn;(2)设Tn=n(2an-5),求S1,S2,S3,S4,S5;T1,T2,T3,T4,T5,并归纳出Sn与Tn的大小规律.
展开
展开全部
(1)Sn=5n+
×2=n(n+4).
(2)Tn=n(2an-5)=n[2(2n+3)-5],
∴Tn=4n2+n.
∴T1=5,T2=4×22+2=18,T3=4×32+3=39,
T4=4×42+4=68,T5=4×52+5=105.
S1=5,S2=2×(2+4)=12,S3=3×(3+4)=21,
S4=4×(4+4)=32,S5=5×(5+4)=45.
由此可知S1=T1,当n≥2时,Sn<Tn.
归纳猜想:当n≥2,n∈N时,Sn<Tn.
n(n?1) |
2 |
(2)Tn=n(2an-5)=n[2(2n+3)-5],
∴Tn=4n2+n.
∴T1=5,T2=4×22+2=18,T3=4×32+3=39,
T4=4×42+4=68,T5=4×52+5=105.
S1=5,S2=2×(2+4)=12,S3=3×(3+4)=21,
S4=4×(4+4)=32,S5=5×(5+4)=45.
由此可知S1=T1,当n≥2时,Sn<Tn.
归纳猜想:当n≥2,n∈N时,Sn<Tn.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询