展开全部
过点P分别作PH⊥BM于H、
作PQ⊥BN于Q
作PD⊥AC于D
由“角平分线上的点到角两边的距离相等”知:
PH=PD 且 PQ = PD
∴ PH = PQ
即:点P到BM与到BN的距离相等。
作PQ⊥BN于Q
作PD⊥AC于D
由“角平分线上的点到角两边的距离相等”知:
PH=PD 且 PQ = PD
∴ PH = PQ
即:点P到BM与到BN的距离相等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:过点P分别作PH⊥BM于H、
作PQ⊥BN于Q
作PD⊥AC于D
由“角平分线上的点到角两边的距离相等”知:
PH=PD 且 PQ = PD
∴ PH = PQ
即:点P到BM与到BN的距离相等。
作PQ⊥BN于Q
作PD⊥AC于D
由“角平分线上的点到角两边的距离相等”知:
PH=PD 且 PQ = PD
∴ PH = PQ
即:点P到BM与到BN的距离相等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询