e^(1/(1-z))在0<|z|<+无穷的圆域的洛朗展开式,求详细过程
引用116贝贝爱的回答:
结果如下图:
解题过程如下图(因有专有公式,故只能截图):
扩展资料求数列极限的方法:
设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:
1、函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-)。
2、函数f(x)在点x0的左右极限中至少有一个不存在。
3、函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。
结果如下图:
解题过程如下图(因有专有公式,故只能截图):
扩展资料求数列极限的方法:
设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:
1、函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-)。
2、函数f(x)在点x0的左右极限中至少有一个不存在。
3、函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。
展开全部
写的不对啊,1/z的模为啥小于1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询