设(an)为等差数列,(bn)为等比数列,且a1=0。若cn=an+bn,且c1=1,c2=1,c3=2
展开全部
(an)为等差数列,设公差为d。
(bn)为等比数列,设公比为q。
a1=0,c1=1,即c1=a1+b1 b1=c1-a1=1。
cn=an+bn,c2=a2+b2=a1+d+b1*q=d+q即1=d+q ①
c3=a3+b3=a1+2d+b1*q^2=2d+q^2即2=2d+q^2 ②解方程得q=2或q=0,公比不能为0,所以公比q=2,公差d=-1
an前十项和:Sa=10*0+10*9*(-1)/2=-45
bn前十项和:Sb=1*(1-2^10)/(1-2)=1023
cn前十项和:Sc=Sa+Sb=978
(bn)为等比数列,设公比为q。
a1=0,c1=1,即c1=a1+b1 b1=c1-a1=1。
cn=an+bn,c2=a2+b2=a1+d+b1*q=d+q即1=d+q ①
c3=a3+b3=a1+2d+b1*q^2=2d+q^2即2=2d+q^2 ②解方程得q=2或q=0,公比不能为0,所以公比q=2,公差d=-1
an前十项和:Sa=10*0+10*9*(-1)/2=-45
bn前十项和:Sb=1*(1-2^10)/(1-2)=1023
cn前十项和:Sc=Sa+Sb=978
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询