2个回答
展开全部
=∫(x^2-x+x+1)/(x^2-1)(x-1)dx
=∫x(x-1)/(x^2-1)(x-1)dx+∫(x+1)/(x^2-1)(x-1)dx
=∫x/(x^2-1)dx+∫1/(x-1)^2dx
=1/2(x^2-1)-1/(x-1)
=∫x(x-1)/(x^2-1)(x-1)dx+∫(x+1)/(x^2-1)(x-1)dx
=∫x/(x^2-1)dx+∫1/(x-1)^2dx
=1/2(x^2-1)-1/(x-1)
追问
你题目看错了哦,分号下面是(x^2-1)(x+1)
追答
=∫(x^2+x-x+1)/(x^2-1)(x+1)dx
=∫x(x+1)/(x^2-1)(x+1)dx-∫(x-1)/(x^2-1)(x+1)dx
=∫x/(x^2-1)dx-∫1/(x+1)^2dx
=1/2ln(x^2-1)+1/(x+1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询