如图所示,在正方形ABCD中,点E,F分别在BC和CD上,AE=AF。求证:(1)BE=DF(2)连接AC交E
2个回答
展开全部
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
∵
AD=ABAF=AE
,
∴Rt△ABE≌Rt△ADF(HL)
∴BE=DF;(4分)
(2)解:四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),即CE=CF,
在△COE和△COF中,
CE=CF∠ACB=∠ACDOC=OC
,
∴△COE≌△COF(SAS),
∴OE=OF,又OM=OA,
∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
∵AE=AF,
∴平行四边形AEMF是菱形.(8分)
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
∵
AD=ABAF=AE
,
∴Rt△ABE≌Rt△ADF(HL)
∴BE=DF;(4分)
(2)解:四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),即CE=CF,
在△COE和△COF中,
CE=CF∠ACB=∠ACDOC=OC
,
∴△COE≌△COF(SAS),
∴OE=OF,又OM=OA,
∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
∵AE=AF,
∴平行四边形AEMF是菱形.(8分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询