平面内有n条直线,其中任何两条都不平行,任何三条不过同一点,试归纳它们交点的个数
6个回答
展开全部
数学归纳法的证明n条直线有An=n(n-1)/2 个交点。
证明:(1)当n=2时 A2=1 成立(2)假设当n=k时成立,即Ak=k(k-1)/2 当n=k+1时:Ak+1=Ak+k=(k+1)k/2 综合得证(注意,第K+1条直线,与原来的K条直线会新产生K个交点
证明:(1)当n=2时 A2=1 成立(2)假设当n=k时成立,即Ak=k(k-1)/2 当n=k+1时:Ak+1=Ak+k=(k+1)k/2 综合得证(注意,第K+1条直线,与原来的K条直线会新产生K个交点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我理解的话
应该就是任意两条直线都会有一个交点
那么就是
n个中取2个的组合
C(2 n)
应该就是任意两条直线都会有一个交点
那么就是
n个中取2个的组合
C(2 n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
相交直线条数 交点个数
2 1
3 3
4 6
an=n(n+1)
2 1
3 3
4 6
an=n(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
N-1 太简单了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询