已知数列1,1/1+2,1/1+2+3,…,1/1+2+3+…+n,…,则其前n项的和等于多少?
4个回答
展开全部
1=2/2=2/(1×2)=2(1-1/2)
1/(1+2)=2/6=2/(2×3)=2(1/2-1/3)
1/(1+2+3)=2/12=2/(3×4)=2(1/3-1/4)
…
1/(1+2+3+…+n)=1/[n(n+1)/2]=2/[n(n+1)]=2[1/n-1/(n+1)]
故前n项的和=2(1-1/2)+2(1/2-1/3)+2(1/3-1/4)+…+2[1/n-1/(n+1)]
=2[1-1/2+1/2-1/3+1/3-1/4+…+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
1/(1+2)=2/6=2/(2×3)=2(1/2-1/3)
1/(1+2+3)=2/12=2/(3×4)=2(1/3-1/4)
…
1/(1+2+3+…+n)=1/[n(n+1)/2]=2/[n(n+1)]=2[1/n-1/(n+1)]
故前n项的和=2(1-1/2)+2(1/2-1/3)+2(1/3-1/4)+…+2[1/n-1/(n+1)]
=2[1-1/2+1/2-1/3+1/3-1/4+…+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
展开全部
1+2+3+...+n
=n(n+1)/2
1/(1+2+3+...n)
=1/[n(n+1)/2]
=2/n(n+1)
=2[1/n-1/(n+1)]
1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+n)
=1+2*(1/2-1/3)+2*(1/2-1/3)+....+2*[1/n-1/(n+1)]
=1+2*[1/2-1/3+1/2-1/3+....+1/n-1/(n+1)]
=1+2*[1/2-1/(n+1)]
=1+2*[(n+1)/(2n+2)-2/(2n+2)]
=1+2*(n+1-2)/(2n+2)
=1+(n-1)/(n+1)
=(n+1)/(n+1)+(n-1)/(n+1)
=(n+1+n-1)/(n+1)
=2n/(n+1)
=n(n+1)/2
1/(1+2+3+...n)
=1/[n(n+1)/2]
=2/n(n+1)
=2[1/n-1/(n+1)]
1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+n)
=1+2*(1/2-1/3)+2*(1/2-1/3)+....+2*[1/n-1/(n+1)]
=1+2*[1/2-1/3+1/2-1/3+....+1/n-1/(n+1)]
=1+2*[1/2-1/(n+1)]
=1+2*[(n+1)/(2n+2)-2/(2n+2)]
=1+2*(n+1-2)/(2n+2)
=1+(n-1)/(n+1)
=(n+1)/(n+1)+(n-1)/(n+1)
=(n+1+n-1)/(n+1)
=2n/(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(2N)/(N+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询