已知f(x)=x+1,g(x)=2x+1,数列{an}满足:a1=1,A(n+1)=f(an)(n为奇数)、g(an)(n为偶数),求an前2007项和

SNOWHORSE70121
2011-05-22 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4806
采纳率:100%
帮助的人:2605万
展开全部
a(2n)=f[a(2n-1)]=a(2n-1)+1, a(2)=a(1)+1=2.
a(2n+1)=g[a(2n)]=2a(2n)+1=2[a(2n-1)+1] + 1 = 2a(2n-1) + 3,
a(2n+1)+3=2[a(2n-1)+3],
{a(2n-1)+3}是首项为a(1)+3=4,公比为2的等比数列.
a(2n-1)+3=4*2^(n-1)=2^(n+1).
a(2n-1)=2^(n+1)-3.

a(2n+2)=a(2n+1)+1=2a(2n)+1 + 1 = 2a(2n)+2,
a(2n+2)+2=2[a(2n)+2],
{a(2n)+2}是首项为a(2)+2=4,公比为2的等比数列.
a(2n)+2=4*2^(n-1)=2^(n+1).
a(2n)=2^(n+1)-2.

a(1)+a(2)+...+a(2007)=a(1)+a(3)+...+a(2*1004-1) + a(2)+a(4)+...+a(2*1003)
=2^2-3 + 2^3-3 + ... + 2^(1004+1)-3 + 2^2-2 + 2^3-2 + ... + 2^(1003+1)-2
=4[1+2+...+2^(1003)] -3*1004 + 4[1+2+...+2^(1002)]-2*1003
=4[2^(1004)-1]+4[2^(1003)-1]-3*1004-2*1003
=3*2^(1005) - 5028
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式