谁帮我做做这道高数题啊?设函数f(x)在R内连续且{F(x)=(x-2t)f(x...
谁帮我做做这道高数题啊?设函数f(x)在R内连续且{F(x)=(x-2t)f(x)dt的从0到x的积分}证明:(1)、若f(x)为偶函数,则F(x)也为偶函数.(2)、当...
谁帮我做做这道高数题啊? 设函数f(x)在R内连续且{F(x)=(x-2t)f(x)dt的从0到x的积分}证明: (1)、若f(x)为偶函数,则F(x)也为偶函数. (2)、当x>0时,若f(x)单增,则F(x)单减. 由于F(x)那个积分打不出来所以用语言叙述了一下,
展开
展开全部
(1)已知f(-x)=f(x)
F(x)=∫(0~x)(x-2t)f(t)dt
F(-x)=∫(0~-x)(-x-2t)f(t)dt=∫(0~x)(x+2t)f(t)dt
令u=-t,dt=-du,F(-x)=∫(0~x)(x-2u)f(-u)d(-u)=∫(0~x)(x-2u)f(u)du
所以F(x)=F(-x)
所以F(x)是偶函数
(2)F'(x)=∫(0~x)
f(t)dt+xf(x)-2xf(x)=∫(0~x)
f(t)dt-xf(x)
F'(0)=0
F''(x)=-xf'(x)
当x>0时,f(x)单调增加,则f'(x)>0,
所以x>0时,F''(x)
F(x)=∫(0~x)(x-2t)f(t)dt
F(-x)=∫(0~-x)(-x-2t)f(t)dt=∫(0~x)(x+2t)f(t)dt
令u=-t,dt=-du,F(-x)=∫(0~x)(x-2u)f(-u)d(-u)=∫(0~x)(x-2u)f(u)du
所以F(x)=F(-x)
所以F(x)是偶函数
(2)F'(x)=∫(0~x)
f(t)dt+xf(x)-2xf(x)=∫(0~x)
f(t)dt-xf(x)
F'(0)=0
F''(x)=-xf'(x)
当x>0时,f(x)单调增加,则f'(x)>0,
所以x>0时,F''(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询