4个回答
展开全部
f(x)=2cos^2x+√3sin2x+a
=2*(1+cos2x)/2+√3sin2x+a
=1+cos2x+√3sin2x+a
=cos2x+√3sin2x+a+1
=2*(1/2*cos2x+√3/2*sin2x)+a+1
=2*(sinπ/6*cos2x+cosπ/6sin2x)+a+1
=2*sin(π/6+2x)+a+1
x∈[0,π/2]
2x∈[0,π]
π/6+2x∈[π/6,7π/6]
-1/2<=sin(π/6+2x)<=1
-1<=2sin(π/6+2x)<=2
当2sin(π/6+2x)=-1时,f(x)值最小
-4=-1+a+1
a=-4
=2*(1+cos2x)/2+√3sin2x+a
=1+cos2x+√3sin2x+a
=cos2x+√3sin2x+a+1
=2*(1/2*cos2x+√3/2*sin2x)+a+1
=2*(sinπ/6*cos2x+cosπ/6sin2x)+a+1
=2*sin(π/6+2x)+a+1
x∈[0,π/2]
2x∈[0,π]
π/6+2x∈[π/6,7π/6]
-1/2<=sin(π/6+2x)<=1
-1<=2sin(π/6+2x)<=2
当2sin(π/6+2x)=-1时,f(x)值最小
-4=-1+a+1
a=-4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不知道a(1)是什么
不过2cos^2x+根号3sin2x
=2cos²2x-1+根号3sin2x+1
=cos2x+根号3sin2x+1
=2(cos2xsinπ/6+sin2xsinπ/6)+1
=2cos(2x+π/6)+1
可以求出最小值,你在对照你的题看一下
不过2cos^2x+根号3sin2x
=2cos²2x-1+根号3sin2x+1
=cos2x+根号3sin2x+1
=2(cos2xsinπ/6+sin2xsinπ/6)+1
=2cos(2x+π/6)+1
可以求出最小值,你在对照你的题看一下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=2cos^2x+根号3sin2x+a
f(x)=2cos^2x+√3sin2x+a
f(x)=1+cos2x+√3sin2x+a
f(x)=2sin(2x+π/6)+1+a
π/6<=2x+π/6<=7π/6
x=7π/6,最小
a=-4
f(x)=2cos^2x+√3sin2x+a
f(x)=1+cos2x+√3sin2x+a
f(x)=2sin(2x+π/6)+1+a
π/6<=2x+π/6<=7π/6
x=7π/6,最小
a=-4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询