f(x)=3x²-x³的单调区间

1个回答
展开全部
摘要 求单调区间的两种方法
1、求导法:导数小于0就是递减,大于0递增,等于0,是拐点极值点
首先根据函数图象的特点得出定义的图象语言表述,如果在定义域的某个区间里,函数的图像从左到右上升,则函数是增函数;如果在定义域的某个区间里,函数的图像从左到右下降,则函数是减函数。
2、定义法:设x1、x2,算出(f(x1)-f(x2))/(x1-x2),大于0就是递增,小于0递减
其次给出函数的相应的性质定义的文字语言表述如果在某个区间里y随着x的增大而增大,则称y是该区间上的增函数,该区间称为该函数的递增区间;如果在某个区间里y随着x的增大而减小,则称y是该区间上的减函数,该区间称为该函数的递减区间。
咨询记录 · 回答于2024-01-16
f(x)=3x²-x³的单调区间
亲请您稍等一下哦我现在写过程,一会发您
请稍等一下
好了吗
亲,解答是这样的哦,你可以参考参考哦,希望我的解答对您有帮助哦亲,祝你生活愉快,谢谢你
求单调区间的两种方法
1. 求导法:导数小于0就是递减,大于0递增,等于0,是拐点极值点
首先根据函数图象的特点得出定义的图象语言表述,如果在定义域的某个区间里,函数的图像从左到右上升,则函数是增函数;如果在定义域的某个区间里,函数的图像从左到右下降,则函数是减函数。
2. 定义法:设x1、x2,算出(f(x1)-f(x2))/(x1-x2),大于0就是递增,小于0递减
其次给出函数的相应的性质定义的文字语言表述:如果在某个区间里y随着x的增大而增大,则称y是该区间上的增函数,该区间称为该函数的递增区间;如果在某个区间里y随着x的增大而减小,则称y是该区间上的减函数,该区间称为该函数的递减区间。
已赞过
你对这个回答的评价是?
评论 收起
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消