数列求和{1/n(n+1)}

 我来答
鲸志愿
2022-09-30 · 专注大中学生升学规划服务
鲸志愿
向TA提问
展开全部

前n项的和:1-1/(1+n)

1/n(n+1)=1/n-1/(n+1)

所以前n项和为

1-1/2+1/2-1/3+1/3+...+1/n-1/(1+n)

=1-1/(1+n)

扩展资料:

等差数列的公式:

公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);

项数=(末项-首项来)÷公差+1;

末项=首项+(项数-1)×公差;

前n项的和Sn=首项×n+项数(项数-1)公差/2;

第n项的值an=首项+(项数-1)×公差;

等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列;

等差数列的和=(首项+末项)×项数÷2;

an=am+(n-m)d,若已知某一项am,可列出与d有关的式子求解an。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式