当A是n阶矩阵,r(A)=n-1,证明r(A*)=1

 我来答
世纪网络17
2022-07-30 · TA获得超过5940个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:141万
展开全部
问题可以这样看,设n阶阵A=(a_ij)的秩是n-1,A*=(A_ji)是伴随矩阵,其中A_ij是i行j列的代数余子式,下面要证明AA*=0.利用Laplace展开来看
这里说明AA*的对角元全部等于0.另外要说明如果i=/=j
这是因为上式可以看成一个行列式的Laplace展开,它是把矩阵A的第j行换成第i行,那么这个新的矩阵有两行是相同的,因此行列式必定等于0.这论证的上式.这两条式子表明AA*=0
于是利用n-1+rank(A*)=rank(A)+rank(A*)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式