∫(上限1,下限0)ln(x+1)dx,用分部积分法计算该定积分

 我来答
惠企百科
2022-12-13 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

∫(上限1,下限0)ln(x+1)dx=2ln2-1。

解答过程如下:

∫ln(x+1)dx

=xln(x+1)-∫xd[ln(x+1)]

=xln(x+1)-∫[x/(x+1)]dx

=xln(x+1)-∫[1-1/(x+1)]dx

=xln(x+1)-∫dx+∫[1/(x+1)]d(x+1)

=xln(x+1)-x+ln(x+1)+C(C为积分常数)

代入上下限

=ln2-1+ln2

=2ln2-1

扩展资料:

根据牛顿-莱布尼茨公式,很多函数的定积分的计算方法可以简单的通过求不定积分来处理。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式