已知半径为14的球面上有A,B,C三点,且AB=9,AC=15角BAC=120°,则球心到ABC三点所确定的平面的距离是?

fnxnmn
2011-05-31 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6621万
展开全部
设球心为O,则OA=OB=OC。
设球心O到面ABC的投影为H,则HA=HB=HC。
则H为△ABC的外心,HA=HB=HC=R(R为外接圆半径)
AB=9,AC=15,∠BAC=120°,
根据余弦定理得:BC=21,
根据正弦定理得:BC/sin∠BAC=2R,
解得R=7√3.
所以由勾股定理:
OH∧2+HA∧2=OA∧2,
即OH∧2+147=196,
因此OH=7.
即球心到ABC三点所确定的平面的距离是7.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式