已知半径为14的球面上有A,B,C三点,且AB=9,AC=15角BAC=120°,则球心到ABC三点所确定的平面的距离是?

恋云150
2011-05-31 · TA获得超过5872个赞
知道大有可为答主
回答量:1212
采纳率:100%
帮助的人:1186万
展开全部
△ABC中,AB=9,AC=15,∠BAC=120°
BC=√[9²+15²-2*9*15*cos120°]=√441=21
△ABC的外接圆直径d=|BC| / sin120°=21/[√3/2]=14√3
半径r=7√3
球心到ABC三点所确定的平面的距离是:h=√(R²-r²)=√(196-147)=7
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式