高三数学抛物线问题

请证明抛物线的一个几何性质:过抛物线y2=4x (y的平方)的焦点F任作直线l与抛物线交于A,B两点,则在x轴上存在定点M(-1,0),使直线MF始终是角AMB... 请证明抛物线的一个几何性质:过抛物线y2=4x  (y的平方)的焦点F任作直线l与抛物线交于A,B两点,则在x轴上存在定点M(-1,0),使直线MF始终是角AMB的平分线  向量法坐标法我会用,我要的是几何证明法,最好能配上图,做了图发邮箱也行cookiedale@163.com 急!!!!!重谢!!  展开
 我来答
晓熊_MB
高粉答主

2011-06-01 · 关注我不会让你失望
知道顶级答主
回答量:3.1万
采纳率:82%
帮助的人:1.6亿
展开全部
设A(x_1,y_1),B(x_2,y_2)

若直线AB斜率不存在,那么AB⊥MF
由对称性,显然MF平分∠AMB

若直线AB斜率为k (k≠0)
由于F (1,0)在AB上,所以AB的方程为
y=k(x-1)
联立直线、抛物线方程,消去y,得到
k^2 x^2-(2k^2+4)x+k^2=0
所以
x_1+x_2=2+4/k^2
x_1•x_2=1
易知直线AM、BM的方程为
AM:(x_1+1)y-y_1 x-y_1=0
BM:(x_2+1)y-y_2 x-y_2=0
O到AM、BM的距离
d_1=(|-y_1 |)/√((x_1+1)^2+〖y_1〗^2 )
d_2=(|-y_2 |)/√((x_2+1)^2+〖y_2〗^2 )
欲证明MF平分∠AMB,只需证明MO是∠AMB的平分线
只需证明d_1=d_2
将〖y_1〗^2=4x_1,〖y_2〗^2=4x_2代入,并整理,
即证
(1-1/(x_1 x_2 ))(x_1-x_2 )=0
由于x_1• x_2=1,所以上式成立
原命题得证。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式