如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形...
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值. 展开
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值. 展开
3个回答
展开全部
证明:(1)由题意可得:△ABD≌△ABE,△ACD≌△ACF.(1分)
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°.
∴∠EAF=90°.(3分)
又∵AD⊥BC,
∴∠E=∠ADB=90°,∠F=∠ADC=90°.(4分)
又∵AE=AD,AF=AD,
∴AE=AF.(5分)
∴四边形AEGF是正方形.(6分)
(2)解:设AD=x,则AE=EG=GF=x,(7分)
∵BD=2,DC=3,
∴BE=2,CF=3.
∴BG=x-2,CG=x-3.(9分)
在Rt△BGC中,BG2+CG2=BC2)
∴(x-2)2+(x-3)2=52(11分),
∴(x-2)2+(x-3)2=52化简得,x2-5x-6=0.
解得x1=6,x2=-1(舍),
所以AD=x=6(12分).
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°.
∴∠EAF=90°.(3分)
又∵AD⊥BC,
∴∠E=∠ADB=90°,∠F=∠ADC=90°.(4分)
又∵AE=AD,AF=AD,
∴AE=AF.(5分)
∴四边形AEGF是正方形.(6分)
(2)解:设AD=x,则AE=EG=GF=x,(7分)
∵BD=2,DC=3,
∴BE=2,CF=3.
∴BG=x-2,CG=x-3.(9分)
在Rt△BGC中,BG2+CG2=BC2)
∴(x-2)2+(x-3)2=52(11分),
∴(x-2)2+(x-3)2=52化简得,x2-5x-6=0.
解得x1=6,x2=-1(舍),
所以AD=x=6(12分).
展开全部
:(1)由题意可得:△ABD≌△ABE,△ACD≌△ACF.(1分)
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°.
∴∠EAF=90°.(3分)
又∵AD⊥BC,
∴∠E=∠ADB=90°,∠F=∠ADC=90°.(4分)
又∵AE=AD,AF=AD,
∴AE=AF.(5分)
∴四边形AEGF是正方形.(6分)
(2)解:设AD=x,则AE=EG=GF=x,(7分)
∵BD=2,DC=3,
∴BE=2,CF=3.
∴BG=x-2,CG=x-3.(9分)
在Rt△BGC中,BG2+CG2=BC2)
∴(x-2)2+(x-3)2=52(11分),
∴(x-2)2+(x-3)2=52化简得,x2-5x-6=0.
解得x1=6,x2=-1(舍),
所以AD=x=6(12分).
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°.
∴∠EAF=90°.(3分)
又∵AD⊥BC,
∴∠E=∠ADB=90°,∠F=∠ADC=90°.(4分)
又∵AE=AD,AF=AD,
∴AE=AF.(5分)
∴四边形AEGF是正方形.(6分)
(2)解:设AD=x,则AE=EG=GF=x,(7分)
∵BD=2,DC=3,
∴BE=2,CF=3.
∴BG=x-2,CG=x-3.(9分)
在Rt△BGC中,BG2+CG2=BC2)
∴(x-2)2+(x-3)2=52(11分),
∴(x-2)2+(x-3)2=52化简得,x2-5x-6=0.
解得x1=6,x2=-1(舍),
所以AD=x=6(12分).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-06-14
展开全部
证明:(1)由题意可得:△ABD≌△ABE,△ACD≌△ACF.(1分)
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°.
∴∠EAF=90°.(3分)
又∵AD⊥BC,
∴∠E=∠ADB=90°,∠F=∠ADC=90°.(4分)
又∵AE=AD,AF=AD,
∴AE=AF.(5分)
∴四边形AEGF是正方形.(6分)
(2)解:设AD=x,则AE=EG=GF=x,(7分)
∵BD=2,DC=3,
∴BE=2,CF=3.
∴BG=x-2,CG=x-3.(9分)
在Rt△BGC中,BG2+CG2=BC2)
∴(x-2)2+(x-3)2=52(11分),
∴(x-2)2+(x-3)2=52化简得,x2-5x-6=0.
解得x1=6,x2=-1(舍),
所以AD=x=6(12分).
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°.
∴∠EAF=90°.(3分)
又∵AD⊥BC,
∴∠E=∠ADB=90°,∠F=∠ADC=90°.(4分)
又∵AE=AD,AF=AD,
∴AE=AF.(5分)
∴四边形AEGF是正方形.(6分)
(2)解:设AD=x,则AE=EG=GF=x,(7分)
∵BD=2,DC=3,
∴BE=2,CF=3.
∴BG=x-2,CG=x-3.(9分)
在Rt△BGC中,BG2+CG2=BC2)
∴(x-2)2+(x-3)2=52(11分),
∴(x-2)2+(x-3)2=52化简得,x2-5x-6=0.
解得x1=6,x2=-1(舍),
所以AD=x=6(12分).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询